遗传算法优化CGXⅡ培养基提高谷氨酸棒状杆菌产L-精氨酸
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimization of CGXII medium by genetic algorithm for increasing L-arginine production by Corynebacterium glutamicum
  • 作者:王震 ; 张豪 ; 郑穗平
  • 英文作者:WANG Zhen;ZHANG Hao;ZHENG Suiping;School of Biology and Biological Engineering, South China University of Technology;
  • 关键词:谷氨酸棒状杆菌 ; L-精氨酸 ; 遗传算法 ; 发酵优化 ; 代谢工程
  • 英文关键词:Corynebacterium glutamicum;;L-arginine;;genetic algorithm;;fermentation optimization;;metabolic engineering
  • 中文刊名:ZNGZ
  • 英文刊名:China Brewing
  • 机构:华南理工大学生物科学与工程学院;
  • 出版日期:2019-03-25
  • 出版单位:中国酿造
  • 年:2019
  • 期:v.38;No.325
  • 基金:国家自然科学基金资助项目(31671840)
  • 语种:中文;
  • 页:ZNGZ201903029
  • 页数:5
  • CN:03
  • ISSN:11-1818/TS
  • 分类号:155-159
摘要
L-精氨酸作为一种半必需氨基酸,在食品医药等行业有着极为重要的作用。培养基作为谷氨酸棒状杆菌(Corynebacterium glutamicum)生产L-精氨酸的基础,其成分及其成分之间的配比对L-精氨酸生产影响很大。利用遗传算法,以CGXⅡ初始培养基为基础,不断优化培养基成分之间的配比,L-精氨酸的积累量从0.61g/L提高至2.37g/L,提高了288.5%。通过数据分析,发现遗传算法不断优化CGXⅡ培养基的成分比例的过程中,伴随着L-精氨酸产量的大幅提升,谷氨酸棒状杆菌的生长模式发生了改变。在进一步的代谢水平分析中,发现CGXⅡ培养基的成分优化导致了谷氨酸棒状杆菌的三羧酸循环(TCA)增强。
        As a semi-essential amino acid, L-arginine plays an extremely important role in food and medicine industries. Medium is used as the basis for the production of L-arginine by Corynebacterium glutamicum during fermentation, its components and the ratio between the components had a great influence on the production of L-arginine. Based on the CGXⅡ initial medium, the ratio between the components was optimized by genetic algorithm. The accumulation of L-arginine increased from 0.61 g/L to 2.37 g/L, which increased by 288.5%. Through data analysis, it was found that the growth pattern of Corynebacterium glutamicum changed with the increase of L-arginine production in the optimization process of the components ratio of CGXⅡ medium. In a further metabolic level analysis, it was found that the optimization of the composition of the CGXⅡ medium resulted in the enhancement of tricarboxylic acid cycle(TCA) of C. glutamicum.
引文
[1]SHIN J H,LE E S Y.Metabolic engineering of microorganisms for the production of L-arginine and its derivatives[J].Microb Cell Factor,2014,13(1):166.
    [2]XU H,DOU W F,XU H Y,et al.A two-stage oxygen supply strategy for enhanced L-arginine production by Corynebacterium crenatum based on metabolic fluxes analysis[J].Biochem Eng J,2009,43(1):41-51.
    [3]PARK S H,KIM H U,KIM T Y,et al.Metabolic engineering of Corynebacterium glutamicum for L-arginine production[J].Nat Commun,2014,5:4618.
    [4]IKEDA M.Amino acid production processes[J].Adv Biochem Eng,2002,79:1-35.
    [5]KEILHAUER C,EGGELING L,SAHM H.Isoleucine synthesis in Corynebacterium glutamicum:Molecular analysis of the ilvB-ilvN-ilvCoperon[J].J Bacteriol,1993,175(17):5595-5603.
    [6]HUANG Y Y,ZHANG H,TIAN H M,et al.Mutational analysis to identify the residues essential for the inhibition of N-acetyl glutamate kinase of Corynebacterium glutamicum[J].Appl Microbiol Biot,2015,99(18):7527-7537.
    [7]ZHAO Q Q,LUO Y C,DOU W F,et al.Controlling the transcription levels of arg GH redistributed L-arginine metabolic flux in N-acetylglutamate kinase and Arg R-deregulated Corynebacterium crenatum[J].J Ind Microbiol Biot,2016,43(1):55-66.
    [8]LEE E,HENG R L,PILON L.Spectral optical properties of selected photosynthetic microalgae producing biofuels[J].J Quant Spectrosc Ra,2013,114:122-135.
    [9]KHATAEE A R,KASIRI M B.Modeling of biological water and wastewater treatment processes using artificial neural networks[J].Clean-Soil Air Water,2011,39(8):742-749.
    [10]SACCENTI E,HOEFSLOOT H C J,SMILDE A K,et al.Reflections on univariate and multivariate analysis of metabolomics data[J].Metabolomics,2014,10(3):361-374.
    [11]LI C,LAN Y,ZHANG J,et al.Biodegradation of methidathion by Serratia sp.in pure cultures using an orthogonal experiment design,and its application in detoxification of the insecticide on crops[J].Ann Microbiol,2013,63(2):451-459.
    [12]HE L,ZHOU L,XU X L,et al.Uniform design for optimizing biomass and intracellular polysaccharide production from self-flocculating Scenedesmus sp.-BH[J].Ann Microbiol,2014,64(4):1779-1787.
    [13]KIRROLIA A,BISHNOI N R,SINGH R.Response surface methodology as a decision-making tool for optimization of culture conditions of green microalgae Chlorella spp.for biodiesel production[J].Ann Microbiol,2014,64(3):1133-1147.
    [14]GARCíA-CAMACHO F,GALLARDO-RODRíGUEZ J J,SáNCHEZ-MIRóN A,et al.Genetic algorithm-based medium optimization for a toxic dinoflagellate microalga[J].Harmful Algae,2011,10(6):697-701.
    [15]CAMACHO-RODRíGUEZ J,CERóN-GARCíA M C,FERNáNDEZ-SEVILLA,J M,et al.Genetic algorithm for the medium optimization of the microalga Nannochloropsis gaditana cultured to aquaculture[J].Bioresource Technol,2015,177:102-109.
    [16]MUFFLER K,RETZLAFF M,ULBER R,et al.Optimisation of halogenase enzyme activity by application of a genetic algorithm[J].J Biotechnol,2007,127(3):425-433.
    [17]ZHU C J,LEE Y K.Determination of biomass dry weight of marine microalgae[J].J Appl Phycol,1997,9(2):189-194.
    [18]LI N,LIU Y,ZHAO Y,et al.Simultaneous HPLC determination of amino acids in tea infusion coupled to pre-column derivatization with 2,4-dinitrofluorobenzene[J].Food Anal Meth,2016,9(5):1307-1314.
    [19]ZHANG J,CHUNG HSH,LO W L.Clustering-based adaptive crossover and mutation probabilities for genetic algorithms[J].Ieee T Evolut Comput,2007,11(3):326-335.
    [20]李海亮,王莹,张洁,等.基于人工神经网络和遗传算法的黑木耳糙米醋发酵条件优化[J].中国酿造,2011,30(7):141-143.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700