碳基复合材料结构800℃光纤高温应变测量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Temperature Strain Measurement for Composite Material Structure by Fiber Optical Sensor Technique
  • 作者:王则力 ; 乔通 ; 宫文然 ; 王智勇 ; 荣克林 ; 王晓晖
  • 英文作者:WANG Ze-li;QIAO Tong;GONG Wen-ran;WANG Zhi-yong;RONG Ke-lin;WANG Xiao-hui;Beijing Institute of Structure and Environment Engineering;Science and Technology on Reliability and Environment Engineering Laboratory, Beijing Institute of Structure and Environment Engineering;
  • 关键词:碳基材料 ; 高温应变 ; 光纤传感 ; 热输出
  • 英文关键词:composite material;;high temperature strain;;fiber optical sensor;;temperature induced strain
  • 中文刊名:QDHJ
  • 英文刊名:Structure & Environment Engineering
  • 机构:北京强度环境研究所;北京强度环境研究所可靠性与环境工程技术重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:强度与环境
  • 年:2019
  • 期:v.46;No.219
  • 基金:国家自然科学基金(11502023,11502024)
  • 语种:中文;
  • 页:QDHJ201903001
  • 页数:6
  • CN:03
  • ISSN:11-1773/V
  • 分类号:3-8
摘要
本文采用自主研制的光纤高温应变复合传感器对碳基复合材料结构样件在常温~810℃范围内的高温应变测试特性进行了研究。在马弗炉内对两件碳基复合材料结构试件分别进行三次常温~810℃重复加热实验,高温应变热输出测试结果具有很好的重复性。在万能试验机上,在800℃高温环境下对碳基复合材料结构试件进行了拉伸实验,光纤高温应变复合传感器的测量值与高温引伸计的测量值具有较好的一致性。与此同时,在本文实验结果中,光纤高温复合传感器测试结果的跟随性、平滑性要优于高温引伸计的测试结果。
        In this paper, the characteristics of structure strain measurement for carbon-based composite material test article from room temperature to 810℃ atmosphere by fiber optical strain sensor are presented. To obtain the temperature-induced-strain of the carbon-based composite material structure, two pieces of carbon-based test article are applied. The test articles are placed in muffle furnace freely with three times heating from room temperature to 810℃atmosphere, respectively. And the results of structure stain show good repeatability among the three times tests. Tensile tests are conducted for the carbon-based composite material structure under 800℃ circumstance by servo-hydraulic machine to validate the accuracy of high temperature stain measurement. The results of the structure high temperature strain obtained by fiber optical strain sensor agree well with the results by high temperature extensometer. Meanwhile,the results obtained by fiber optical strain sensor are more smoothly than the results by high temperature extensometer in present tests.
引文
[1]王建军,王智勇,栾叶君,等.高超声速飞行器热结构力热氧试验技术概述,强度与环境[J].2018,45(2):59-64.[WANGJian-jun,Wang Zhi-yong,LUAN Ye-jun,et al.A review of mechanical-thermal-oxygen composite test technology for hot structure of hypersonic aircraft,Structure&Environment Engineering,018,45(2):59-64.]
    [2]荣克林,洪洁.高性能系统-航天飞行器的力学环境试验与评估[J].强度与环境,2017,44(6):1-7.[RONG Ke-lin,Hong Jie.Study of experiment and evaluation about mechanical environment for high performance system[J].Structure&Environment Engineering,2017,44(6):1-7.]
    [3]沈观林,韩燕生,宋守森,等.用于液氮温度的低温电阻应变计热输出实验研究[J].电工电能新技术,1990,4:41-44.[SHEN Guan-lin,HAN Yan-sheng,Song Shou-seng,et al.The investigation of the temperature-induced apparent strain for the low temperature strain gages using in 77k[J].Advanced Technology of Electrical Engineering and Energy,1990,4:41-44.]
    [4]何思龙,宁交贤.750℃高温电阻应变计的研究与应用[J].仪表材料,1983,14(4):42-48.
    [5]吴东,陈德江,张松贺,等.高超声速飞行器典型部位高温应变测量[J].导弹与航天运载技术,2012,6:30-33.[WU Dong,Chen De-jiang,ZHANG Song-he,et al.High Temperature Strain Measurement of Typical Components in Hypersonic Vehicle[J].Missiles and Space Vehicles,2012,6:30-33.]
    [6]刘梓才,喻丹萍,卢琰琰,等.高温应变片热输出测试[J].核动力工程,2011,32(S1):166-168.[LIU Zi-cai,YU Dan-ping.LUYan-yan,et al.Thermal Output Test of High Temperature Strain Gauge[J].Nuclear Power Engineering,2011,32(S1):166-168.]
    [7]李丽霞,蒋军亮,郝庆瑞,等.某种高温合金550℃高温应变测试[J].应用力学学报,2015,32(3):378-383.[LI Lixia,Jiang jun-liang,Hao qing-rui,et al.Thermal strain test of high temperature alloy at 550℃[J].Chinese Journal of Applied Mechanics,2015,32(3):378-383.]
    [8]吴东,陈德江,周玮,等.高热环境下前缘结构高温应变测量[J].实验流体力学,2016,30(3):92-97.[WU Dong,Chen De-jiang,Zhou Wei,et al.High temperature strain measurement of the front edge structure in high thermal environment[J].Journal of Experiments in Fluid Mechanics,2016,30(3):92-97.]
    [9]A Piazza.High-Temperature Instrumentation,Hypersonic Educational Initiative[J].NASA Dryden Flight Research Center,2008.
    [10]巨亚堂,王则力,乔通,等.光纤法布里-珀罗高温应变传感器技术进展[J].强度与环境,2018,45(5):58-64.[Ju ya-tang,Wang Ze-li,QIAO Tong,et al.Progress of fiber optical Fabry-Perot high temperature strain sensor,Structure&Environment Engineering[J].2018,45(5):58-64.]
    [11]丁旭东,张钰民,宋言明,等.纯石英光纤光栅高温应变响应特性[J].中国激光,2017,44(11):1106003-1~1106003-7.[DINGXu-dong,ZHANG Yu-min,Song Yan-ming,et al.Response characteristics of pure-quartz-core fiber Bragg grating under high temperature strain[J].Chinese Journal of Lasers,2017,44(11),1106003-1~1106003-7.]
    [12]江毅,贾景善,付雷,等.外腔式光纤Fabry-Perot干涉型高温应变传感器[J].光学技术,2017,43(5):423-426.[Jiang Yi,Jia Jing-lei,FU Lei,et al.,A high-temperature strain sensor based on extrinsic Fabry-Perot interferometer[J].Optical Technique,2017,43(5):423-426.]
    [13]饶云江,黎宏,朱涛,等.基于空芯光子晶体光纤的法-珀干涉式高温应变传感器[J].中国激光,2009,36(6):1484-1488.[Rao Yun-jiang,LI Hong,ZHU Tao,et al,High Temperature Strain Sensor Based on In-Line Fabry-Perot Interferometer Formed by Hollow-Core Photonic Crystal Fiber[J].Chinese Journal of Lasers,2009,36(6):1484-1488.]
    [14]Y Zhang,X Dong,Y Song,et al.Characterization of Fiber Bragg Grating in Pure-Silica-core and Ge-droped-core Optical Fiber under High-temperature Strain[J].Measurement Science and Technology,2018,29(3),10.1088/1361-6501/aa8e2a.2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700