移栽对黄瓜秧苗次生代谢物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the Secondary Metabolites of Cucumber Seedling under Transplanting Treatments
  • 作者:郭晓阳 ; 何太学 ; 代丹丹 ; 胡颖 ; 余彦鸽 ; 理向阳 ; 江海东 ; 郭红霞
  • 英文作者:GUO Xiaoyang;HE Taixue;DAI Dandan;HU Ying;YU Yange;LI Xiangyang;JIANG Haidong;GUO Hongxia;Industrial Crops Research Institute,Henan Academy of Agricultural Sciences;Chuangshiji Seed Co. LTD;Nanjing Agricultural University;
  • 关键词:黄瓜 ; 移栽 ; 代谢组学 ; UNIFY数据库
  • 英文关键词:Cucumber;;Transplantation;;Metabolomics;;UNIFY database
  • 中文刊名:HNNY
  • 英文刊名:Journal of Henan Agricultural Sciences
  • 机构:河南省农业科学院经济作物研究所;创世纪种业有限公司;南京农业大学;
  • 出版日期:2019-06-14 11:10
  • 出版单位:河南农业科学
  • 年:2019
  • 期:v.48;No.533
  • 基金:河南省科技开放合作项目(172106000051);; 河南省农业科学院自主创新项目
  • 语种:中文;
  • 页:HNNY201906018
  • 页数:8
  • CN:06
  • ISSN:41-1092/S
  • 分类号:117-124
摘要
针对大田生产中黄瓜育苗移栽后易出现缓苗期的问题,以两叶一心期的黄瓜叶片作为研究对象,运用代谢组学的方法分析黄瓜在不移栽与移栽2种处理下叶片中的代谢物差异。结果表明,不移栽处理与移栽处理后1、3、5 d的样品代谢物没有显著分离,而7 d的样品代谢物却出现了明显的分离,这说明移栽后7 d开始出现缓苗期,确定了开展缓苗期研究的适宜时期。同时,对不移栽处理与移栽处理后7 d的样品代谢物进行了OPLS-DA二元统计分析,找到了6种差异化代谢物,并通过UNIFY数据库鉴定出其中4种化合物,分别为戊糖、7-O-α-L-鼠李吡喃糖基-山柰酚-3-O-β-D-葡萄吡喃糖基、(1-6)-β-D-葡萄糖苷山柰酚-3-O-(2G-α-L-鼠李糖基)-芸香糖苷、商陆苷元。其中,戊糖属于糖类,7-O-α-L-鼠李吡喃糖基-山柰酚-3-O-β-D-葡萄吡喃糖基、(1-6)-β-D-葡萄糖苷山柰酚-3-O-(2G-α-L-鼠李糖基)-芸香糖苷属于黄酮类物质,商陆苷元属于萜类物质,其余2种化合物未知。在不移栽和移栽2个处理中,这6种代谢物含量差异较大,初步认为这6种物质是与育苗移栽相关的代谢物。
        In order to reveal growth retardation after cucumber transplantation,we took the two-leaf one-stage leaves as the research object,and the differences of secondary metabolites of cucumber seedling were analysed under transplantation and non-transplantation based on large-scale untargeted metabolomic analysis,such as principle components analysis(PCA) and orthogonal partial least square discriminant analysis(OPLS-DA).Results showed that there were no different metabolites in the cucumber leaves between transplanting treatment and non-transplanting treatment on 1,3,5 d.While significant differences occurred on 7 d after transplantation,which indicated that the slow seedling stage appeared on 7 d after transplanting,determing the suitable period for the study.By processing OPLS-DA analysis,six secondary metabolites were shown to be responsible for classifying the two treatments.According to the macthing through the UNIFY database,four compounds were identified as Pentose,7-O-alpha-L-buckthorn pyranose base-kaempferia galanga phenol-3-O-beta-D-glucose pyranose base,(1-6)-beta-D-glycosidase kaempferia galanga phenol-3-O-(2 G-alpha-L-rhamnose)-rue glucoside and Phytolaccagenin,respectively.Among them,Pentose belongs to carbohydrates.While 7-O-alpha-L-buckthorn pyranose base-kaempferia galanga phenol-3-O-beta-D-glucose pyranose base and(1-6)-beta-D-glycosidase kaempferia galanga phenol-3-O-(2 G-alpha-L-rhamnose)-rue glucoside,both of them belong to flavonoids.Phytolaccagenin belongs to terpenoids.In the transplantation and non-transplantation treatments,the contents of these six metabolites were significantly different.It was preliminarily considered that these six different substances were metabolites related to seedling raising and transplanting.
引文
[1] 毛树春,韩迎春,王国平.棉花基质育苗和裸苗移栽存在问题及克服办法[J].中国棉花,2007,34(3):32-34.
    [2] 李向前,杜永华.大棚黄瓜缓苗期死苗原因及应对措施[J].河北农业,2014(2):32-33.
    [3] SCHIMEL J P,JACHSON L E,FIRESTONE M K.Spatial and temporal effects on plant-microbial competition for inorganic nitrogen in a california annual grassland[J].Soil Biology & Biochemistry,1989(21):1059-1066.
    [4] SMITH T,HUSTON M.A theory of the spatial and temporal dynamics of plant communities [J].Plant Ecology,1989,83(1/2):49-69.
    [5] SANCHEZ D H,SCHWABE F,ERBAN A,et al.Comparative metabolomics of drought acclimation in model and forage legumes [J].Plant Cell & Environment,2012,35(1):136-149.
    [6] KUSANO M,TOHGE T,FUKUSHIMA A,et al.Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light[J].Plant Journal,2011,67(2):354-369.
    [7] HANHINEVA K,ROGACHEV I,KOKKO H,et al.Non-targeted analysis of spatial metabolite composition in strawberry(Fragaria×ananassa) flowers[J].Phytochemistry,2008,69(13):2463-2481.
    [8] CHARLTON A,ALLNUTT T,HOLMES S,et al.NMR profiling of transgenic peas[J].Plant Biotechnol,2004,2:27-35.
    [9] FLAMINI R,ROSSO M D,MARCHI F D,et al.An innovative approach to grape metabolomics:Stilbene profiling by suspect screening analysis[J].Metabolomics,2013,9:1243-1253.
    [10] GHOLAMI M,BOUGHTON B A,FAKHARI A R,et al.Metabolomic study reveals a selective accumulation of l-arginine in the d-ornithine treated tobacco cell suspension culture[J].Process Biochemistry,2014,49:140-147.
    [11] ROLDAN M,ENGEL B,DEVOS R H,et al.Metabolomics reveals organ-specific metabolic rearrangements during early tomato seedling development[J].Metabolomics,2014,10:958-974.
    [12] SOBOLEV A P,BROSIO E,GIANFERRI R,et al.Metabolic profile of lettuce leaves by high-field NMR spectra[J].Magnetic Reso Chem,2005,43:625-638.
    [13] HARBORNE J B.Herbivores their interactions with secondary plant metabolites [J].Flavonoid Pigments,1991,11:389-429.
    [14] IWASHIVA T.Flavonoid function and activity to plants and other organisms[J].Biological Sciences in Space,2003,17(1):24-44.
    [15] KOSE R E,QUATTROCCHIO F,MOLJ N M.The flavonoid biosynthetic pathway in plants:Function and evolution[J].Bioessays,1994,16(2):123-132.
    [16] KAY C D,HOOPER L,KROON P A,et al.Relative impact of flavonoid composition,dose and structure on vascular function:A systematic review of randomised controlled trials of flavonoid-rich food products[J].Molecular Nutrition & Food Research,2012,56(11):1605-1616.
    [17] AGATI G,STEFANO G,BIRICOLTI S,et al.Mesophyll distribution of ‘antioxidant’ flavonoid glycosides in Ligustrum vulgare leaves under contrasting sunlight irradiance[J].Annals of Botany,2009,104(5):853-861.
    [18] ISLAM M N,DOWNEY F,NGC K Y.Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis,Scutellaria lateriflora,Scutellaria racemosa,Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS [J].Metabolomics,2011,7(7):446-453.
    [19] CHONG W P K,LIN T G,REDDY S G,et al.Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture [J].Rapid Communications in Mass Spectrometry,2009,23(23):3763-3771.
    [20] LOGEMANN E,SCHULZ W,SOMSSICH I E,et al.UV light selectively coinduces supply pathways from primary metabolism and flavonoid secondary product formation in parsley[J].Proceedings of the National Academy of Sciences of the United States of America,2000,97(4):1903-1907.
    [21] 岳跃冲,范燕萍.植物萜类合成酶及其代谢调控的研究进展[J].园艺学报,2011,38(2):379-388.
    [22] ROUPHAEL Y,COLLA G,BERNARDO L,et al.Zinc excess triggered polyamines accumulation in lettuce root metabolome,as compared to osmotic stress under high salinity[J].Front Plant Sci,2016,7:842.
    [23] ZHAO L,HUANG Y,HU J,et al.(1)H NMR and GC-MS based metabolomics reveal defense and detoxifica-tion mechanism of cucumber plant under nano- Cu stress[J].Environ Sci Technol,2016,50(4):2000-2010.
    [24] WANG Y,XU L,SHEN H,et al.Metabolomic analysis with GC-MS to reveal potential metabolites and biological pathways involved in Pb & Cd stress response of radish roots[J].Sci Rep,2015,5:18296.
    [25] PIDATALA V R,LI K,SARKAR D,et al.Comparative metabolic profiling of vetiver(Chrysopogon zizanioides) and maize(Zea mays) under lead stress[J].Chemosphere,2018,193:903-911.
    [26] TIESSEN A,HENDRIKS J H,STITT M,et al.Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-Glucose pyrophosphorylase a novel regulatory mechanism linking starch synthesis to the sucrose supply [J].The Plant Cell,2002,14(9):2191-2213.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700