加劲索网对超大跨度气承式膜结构性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of a Stiffening Cable Net on Performance of Large-Span Air-Supported Membrane Structures
  • 作者:孙国军 ; 吴明泽 ; 何艳丽 ; 薛素铎 ; 詹璞玉
  • 英文作者:Sun Guojun;Wu Mingze;He Yanli;Xue Suduo;Zhan Puyu;The Key Laboratory of Urban Security and Disaster Engineering of Ministry of Education,Beijing University of Technology;Architectural and Civil Engineering Institute,Beijing University of Technology;
  • 关键词:气承式膜结构 ; 风振系数 ; 有限元模拟 ; CFD数值模拟 ; 加劲索网
  • 英文关键词:air-supported membrane;;wind vibration coefficient;;finite element simulation;;CFD numerical simulation;;stiffening cable net
  • 中文刊名:TJDX
  • 英文刊名:Journal of Tianjin University(Science and Technology)
  • 机构:北京工业大学城市与安全工程减灾教育部重点实验室;北京工业大学建筑工程学院;
  • 出版日期:2019-07-15
  • 出版单位:天津大学学报(自然科学与工程技术版)
  • 年:2019
  • 期:v.52;No.343
  • 基金:北京市教育委员会资助项目(KM201710005017)
  • 语种:中文;
  • 页:TJDX2019S2008
  • 页数:6
  • CN:S2
  • ISSN:12-1127/N
  • 分类号:58-63
摘要
气承式膜结构质量轻、柔度大、几何非线性强,布置加劲索网可能对其力学性能有较大的影响,但对超大跨度气承式膜结构研究较少,且现有《CECS158—2015膜结构技术规程》没有给定气承式膜结构风振系数设计建议值.针对这一现状,建立了布置加劲索网与不布置加劲索网的2种大跨度气承式膜结构模型,分析了它们在内压及自重作用下应力及位移的区别.以0°风向角为例,采用CFD技术求得其风压系数并施加到2种气承式膜结构上,对比分析加劲索网对整体结构位移及应力影响.采用完全法进行风振时程响应分析并计算其风振动系数.结果表明:布置加劲索网与否对找形分析结果影响较小,在内压和自重作用下,膜面位移及应力的变化规律大致相同;但在静风作用下布置加劲索网的气承式膜结构最大位移相对减小57.3%,最大应力减小25%,且迎风侧凹陷处明显减小;加劲索网的布置对气承式膜结构的风振系数影响较小,该气承式膜结构的风振系数统一可取1.3.
        The air-supported membrane has such properties as lightness,flexibility,and strong geometric nonlinearity,which will be significantly affected by arrangements of stiffening cable nets.However,large-span airsupported membranes have seldom been reported.Meanwhile,the existing "CECS 158—2015 Technical Specification for Membrane Structure" does not specify the wind vibration coefficient of the air-supported membrane.Two large-span air-supported membrane models,with and without stiffening cable nets,were established to analyze their differences in stress and displacement under internal pressure and gravity.Taking 0° wind angle as example,the wind pressure coefficient was obtained by using CFD technology and applied to two types of air-supported membrane models for comparison.The Full method was used to analyze time-history response of wind-induced vibration and the wind vibration coefficients were calculated.The results show that cable nets have minor influence on findforming analysis.Meanwhile,under internal pressure and gravity,the variation trend of the displacement of airsupported membrane structure is similar with that of the stress of membrane with or without cable nets.However,under the static wind load,the maximum displacement of air-supported membrane structure with cable nets decreased57.3% relatively,and the maximum stress of membrane decreased 25% relatively.The depression displacement on the windward side of air-supported membrane structure with cable nets decreased obviously.However,the cable nets have little influence on the wind vibration coefficient of air-supported membrane structure,and the wind vibration coefficient of this air-supported membrane structure is suggested to be 1.3.
引文
[1]中国工程建设标准化协会.CECS 158-2015膜结构技术规程[S].北京:中国计划出版社,2015.China Association for Engineering Construction Standardization.CECS 158-2015 Technical Specification for Membrane Structures[S].Beijing:China Planning Press,2015(in Chinese).
    [2]Qin Qiang,Shen Shanshan,Gong Jinghai.Deflation behavior and related safety assessment of an airsupported membrane structure[J].Thin-Walled Structures,2018,129:225-236
    [3]卿强,龚景海,李中立.气承式膜结构紧急情况下人员疏散时间简化计算[J].建筑结构,2013,43(22):96-99.Qing Qiang,Gong Jinghai,Li Zhongli.Simplified calculation method for deflation of an air-supported membrane structure under emergency evacuation conditions[J].Building Structure,2013,43(22):96-99(in Chinese).
    [4]张影,袁行飞,徐晓红.强降雨作用下具有初始凹陷的充气膜结构袋状效应研究[J].空间结构,2018,24(4):49-55,61.Zhang Ying,Yuan Xingfei,Xu Xiaohong.Analysis of bagging effect in air-supported membrane structures with initial imperfections under intensive rainfall[J].Spatial Structures,2018,24(4):49-55,61(in Chinese).
    [5]易赛莉,曾斌.充气膜结构火灾温度场特性研究[J].消防科学与技术,2016,35(11):1507-1510.Yi Saili,Zeng Bin.Study on the fire temperature field characteristics of inflatable membrane structure[J].Fire Science and Technology,2016,35(11):1507-1510(in Chinese).
    [6]易赛莉,曾斌.充气膜结构火灾下烟气运动特性研究[J].消防科学与技术,2016,35(4):476-480.Yi Saili,Zeng Bin.Fire smoke movement characteristics of inflatable membrane structure[J].Fire Science and Technology,2016,35(4):476-480(in Chinese).
    [7]冉无忌,姜国义,王峰.应用LK k-ε模型的气承式充气膜结构风荷载和风环境研究[J].建筑结构,2018,48(S2):1012-1017.Ran Wuji,Jiang Guoyi,Wang Feng.Study on wind load and wind environment of the air-supported membrane structures using LK k-εmodel[J].Building Structure,2018,48(S2):1012-1017(in Chinese).
    [8]申跃奎,王张萍,彭成波.半圆筒状充气膜不同火灾场景下温度场分布特性[J].结构工程师,2014,30(5):68-75.Sheng Yuekui,Wang Zhangping,Peng Chengbo.Temperature field distribution characteristics of half cylinder pneumatic membrane structure under different fire scenarios[J].Structural Engineers,2014,30(5):68-75(in Chinese).
    [9]申跃奎,王张萍,彭成波,等.矩形充气膜结构的火灾温度场及烟气分布[J].工业建筑,2014,44(9):78-82.Sheng Yuekui,Wang Zhangping,Peng Chengbo,et al.Fire temperature fields and smoke distribution of rectangular plane air-supported membrane structures[J].Industrial Construction,2014,44(9):78-82(in Chinese).
    [10]申跃奎,赵德顺,王秦.考虑流固耦合作用的充气膜结构风压分布研究[J].计算力学学报,2017,34(5):665-671.Shen Yuekui,Zhao Deshun,Wang Qin.On wind pressure coefficient distribution of air-supported structures considering fluid-structure coupling[J].Chinese Journal of Computational Mechanics,2017,34(5):665-671(in Chinese).
    [11]方圆,申跃奎,赵明,等.基于风压系数简化模型的圆柱形充气膜结构有限元分析[J].钢结构,2015,30(8):12-16,71.Fang Yuan,Shen Yuekui,Zhao Ming,et al.Finite element analysis of cylindrical air-supported membrane structure based on the simplified model of wind pressure coefficient[J].Steel Construction,2015,30(8):12-16,71(in Chinese).
    [12]中国人民共和国住房和城乡建设部.GB/T 50009-2012建筑结构荷载规范[S].北京:中国建设工业出版社,2012.MOHURD(Ministry of Housing and Urban-Rural Development of the People’s Republic of China).GB/T50009-2012 Load Code for the Design of Building Structures[S].Beijing:China Architecture&Building Press,2012(in Chinese).
    [13]丁阳,齐麟,赵奕程,等.考虑屋面板自振效应和流固耦合效应的大跨度空间结构风振系数[J].建筑结构学报,2008(5):101-106.Ding Yang,Qi Lin,Zhao Yicheng,et al.Wind vibration coefficient of long-span spatial structures with selfoscillating of roof and fluid-structure coupling effect[J].Journal of Building Structure,2008(5):101-106(in Chinese).
    [14]李杰超,魏德敏.大跨索网结构风振系数分析[J].空间结构,2008(3):36-40.Li Jiechao,Wei Demin.Analyses for wind-induced coefficients of long-span cable-net structures[J].Spatial Structures,2008(3):36-40(in Chinese).
    [15]陈红媛,房贞政.单向张弦梁结构风振系数的研究[J].福州大学学报(自然科学版),2009,37(3):401-406.Chen Hongyuan,Fang Zhenzheng.Study on windinduced vibration factor of the one-way beam string structures[J].Journal of Fuzhou University:Natural Science Edition,2009,37(3):401-406(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700