基于冠层塔吊原位测定长白山温带阔叶红松原始林群落主要树种的光合特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:In-situ measurement of photosynthetic characteristics of dominant tree species based on canopy crane in a Korean pine broad-leaved forest in Changbai Mountain, northeastern China
  • 作者:梁星云 ; 刘世荣
  • 英文作者:LIANG Xing-yun;LIU Shi-rong;Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry;South China Botanical Garden, Chinese Academy of Sciences;
  • 关键词:林冠塔吊 ; 长白山 ; 红松阔叶混交林 ; 光合能力 ; 季节动态
  • 英文关键词:canopy crane;;Changbai Mountain;;Korean pine and broad-leaved forest;;photosynthetic capacity;;seasonal dynamic
  • 中文刊名:YYSB
  • 英文刊名:Chinese Journal of Applied Ecology
  • 机构:中国林业科学研究院森林生态环境与保护研究所;中国科学院华南植物园;
  • 出版日期:2019-05-06 15:38
  • 出版单位:应用生态学报
  • 年:2019
  • 期:v.30
  • 基金:国家自然科学基金重大项目(31290223)资助~~
  • 语种:中文;
  • 页:YYSB201905011
  • 页数:9
  • CN:05
  • ISSN:21-1253/Q
  • 分类号:75-83
摘要
为了更好地理解温带阔叶红松原始林群落主要树种的生理生态学特征,为森林生态系统碳动态的模拟预测提供基础数据,本研究依托中国科学院长白山森林生态系统定位站,首次利用冠层塔吊原位测定了阔叶红松原始林群落4个主要树种成熟大树的CO_2响应曲线,并利用FvCB模型计算了一些重要的光合生理参数.结果表明:红松的光合速率(A)、最大羧化速率(V_(c max))和气孔导度(g_s)均最小,而其气孔对光合的限制性(L_s)最大.水曲柳、蒙古栎和紫椴这3个阔叶树种的光合特征也存在显著差异.基于叶片面积的V_(c max)大小顺序为:水曲柳(83.2μmol·m~(-2)·s~(-1))、蒙古栎(89.3μmol·m~(-2)·s~(-1))>紫椴(68.4μmol·m~(-2)·s~(-1))、红松(68.8μmol·m~(-2)·s~(-1))(P<0.05),而基于叶片质量的V_(c max)大小顺序为:水曲柳(1.36μmol·g~(-1)·s~(-1))>蒙古栎(1.03μmol·g~(-1)·s~(-1))>紫椴(0.90μmol·g~(-1)·s~(-1))>红松(0.42μmol·g~(-1)·s~(-1))(P<0.05).7—9月,水曲柳和蒙古栎的A值显著降低,而紫椴和红松的A值变化不显著;所有树种V_(c max)都随季节发生显著下降.在温带阔叶红松林生态系统碳动态的模拟预测中,应该考虑V_(c max)的季节变化.
        To better understand the eco-physiological characteristics of dominant tree species in Korean pine broad-leaved forests, and to provide fundamental data for modelling and predicting carbon dynamics of forest ecosystems, we measured leaf CO_2 assimilation rate versus intercellular CO_2 concentration curves of four canopy dominant tree species in a Korean pine broad-leaved forest, in situ, for the first time, using a canopy crane in the Changbai Mountain Forest Ecosystem Research Station. Several important photosynthetic parameters were fitted with the FvCB model. Photosynthe-tic rate(A), maximum carboxylation rate(V_(c max)) and stomatal conductance(g_s) were lowest in Pinus koraiensis(Pk), while stomatal limitation on photosynthesis(L_s) was highest in Pk. There were significant variations of photosynthetic characteristics among the three broad-leaved tree species [i.e., Fraxinus mandshurica(Fm), Quercus mongolica(Qm) and Tilia amurensis(Ta)]. The rank of tree species with respect to area-based V_(c max) was: Fm(83.2 μmol·m~(-2)·s~(-1)) and Qm(89.3 μmol·m~(-2)·s~(-1)) > Ta(68.4 μmol·m~(-2)·s~(-1)) and Pk(68.8 μmol·m~(-2)·s~(-1))(P<0.05), and their rank with respect to mass-based V_(c max) was: Fm(1.36 μmol·g~(-1)·s~(-1)) > Qm(1.03 μmol·g~(-1)·s~(-1)) > Ta(0.90 μmol·g~(-1)·s~(-1)) > Pk(0.42 μmol·g~(-1)·s~(-1))(P<0.05). From July to September, A value significantly declined in Fm and Qm, but remained stable in Ta and Pk. By contrast, V_(c max) significantly decreased in all tree species from July to September. Our results indicated that seasonal variation of V_(cmax) should be taken into consideration in the modelling and predicting of forest ecosystem carbon dynamics in northeastern China.
引文
[1] Liu J,Chen JM,Cihlar J,et al.A process-based boreal ecosystem productivity simulator using remote sensing inputs.Remote Sensing of Environment,1997,62:158-175
    [2] Luo YQ,White LW,Canadell JG,et al.Sustainability of terrestrial carbon sequestration:A case study in Duke Forest with inversion approach.Global Biogeochemical Cycles,2003,17:1021,doi:10.1029/2002GB001923
    [3] Long SP,Bernacchi CJ.Gas exchange measurements,what can they tell us about the underlying limitations to photosynthesis?Procedures and sources of error.Journal of Experimental Botany,2003,54:2393-2401
    [4] Niinemets ü,Keenan TF,Hallik L.A worldwide analysis of within-canopy variations in leaf structural,chemical and physiological traits across plant functional types.New Phytologist,2015,205:973-993
    [5] Rogers A.The use and misuse of Vc,max in Earth System Models.Photosynthesis Research,2014,119:15-29
    [6] Farquhar GD,von Caemmerer S,Berry JA.A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species.Planta,1980,149:78-90
    [7] Liang X-Y (梁星云),Liu S-R (刘世荣).A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves.Chinese Journal of Plant Ecology (植物生态学报),2017,41(6):693-706 (in Chinese)
    [8] Wu J-B (吴家兵),Guan D-X (关德新),Sun X-M (孙晓敏),et al.Photosynthetic characteristics of dominant species and community canopy of Korean pine and broad-leaved mixed forest in Changbai Mountain.Science in China Series D-Earth Sciences (中国科学D辑:地球科学),2006,36(suppl.2):83-90 (in Chinese)
    [9] Wu J-B (吴家兵),Guan D-X (关德新),Zhang M (张弥),et al.Photosynthetic characteristics of Quercus mongolica in region of Changbai Mountain.Journal of the Graduate School of the Chinese Academy of Sciences (中国科学院大学学报),2006,23(4):548-554 (in Chinese)
    [10] Zhang M (张弥),Wu J-B (吴家兵),Guan D-X (关德新),et al.Light response curve of dominant tree species photosynthesis in broadleaved Korean pine forest of Changbai Mountain.Chinese Journal of Applied Ecology (应用生态学报),2006,17(9):1575-1578 (in Chinese)
    [11] Huang Z (黄珍),Tang J-Y (唐景毅),Liu J-C (柳静臣),et al.Seasonal dynamics of photosynthesis and spectral characteristics of natural regeneration Pinus koriensis in the Changbai Mountains.Chinese Journal of Applied & Environmental Biology (应用与环境生物学报),2014,20(3):455-461 (in Chinese)
    [12] Shi T-T (施婷婷).Modeling CO2 and H2O Exchanges over Korean Pine and Broadleaved Forest in Changbai Mountain.PhD Thesis.Beijing:Graduate University of Chinese Academy of Sciences,2009 (in Chinese)
    [13] Tang Y (唐艳),Wang C-K (王传宽).A feasible method for measuring photosynthesis in vitro for major tree species in northeastern China.Chinese Journal of Plant Ecology (植物生态学报),2011,35(4):452-462 (in Chinese)
    [14] Nakamura A,Kitching RL,Cao M,et al.Forests and their canopies:Achievements and horizons in canopy science.Trends in Ecology & Evolution,2017,32:438-451
    [15] Jilin Changbai Mountain Protection Development Mana-gement Committee (吉林省长白山保护开发区管理委员会).Climate [EB/OL].(2011-03-21) [2019-02-24].http://www.jlcbs.org/stgk/qh/ (in Chinese)
    [16] Zhang M,Yan QL,Zhu JJ.Optimum light transmittance for seed germination and early seedling recruitment of Pinus koraiensis:Implications for natural regeneration.iForest:Biogeosciences and Forestry,2015,8:853
    [17] Zhao D-C (赵大昌).The relationship between volcanic explosion and vegetation succession in Changbai Moutain.Resources Science (资源科学),1984,6(1):72-78 (in Chinese)
    [18] Dai LM,Qi L,Wang QW,et al.Changes in forest structure and composition on Changbai Mountain in Northeast China.Annuals of Forest Science,2011,68:889-897
    [19] Xu Z-B (徐振邦),Li X (李昕),Dai H-C (戴洪才),et al.Study on biomass of the broad leaved-Korean pine forest in Changbai Mountain.Research of Forest Ecosystem (森林生态系统研究),1985,5:33-47 (in Chinese)
    [20] Sharkey TD,Bernacchi CJ,Farquhar GD,et al.Fitting photosynthetic carbon dioxide response curves for C3 leaves.Plant,Cell & Environment,2007,30:1035-1040
    [21] R Core Team.R:A Language and Environment for Statistical Computing 2017 [EB/OL].(2017-05-05) [2017-06-01].https://www.R-project.org/
    [22] Barker MG,Pinard MA.Forest canopy research:Sampling problems,and some solutions// Eduard LK,ed.Tropical Forest Canopies:Ecology and Management.London:Springer,2001:23-38
    [23] Parker GG,Smith AP,Hogan KP.Access to the upper forest canopy with a large tower crane.BioScience,1992,42:664-670
    [24] Wu Y (吴毅),Liu W-Y (刘文耀),Song L (宋亮),et al.Advances in ecological studies of epiphytes using canopy cranes.Chinese Journal of Plant Ecology (植物生态学报),2016,40(5):508-522 (in Chinese)
    [25] Jordan DB,Ogren WL.The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase.Depen-dence on ribulose bisphosphate concentration,pH and temperature.Planta,1984,161:308-313
    [26] Bernacchi CJ,Singsaas EL,Pimentel C,et al.Improved temperature response functions for models of Rubisco-limited photosynthesis.Plant,Cell & Environment,2001,24:253-259
    [27] Bernacchi CJ,Portis AR,Nakano H,et al.Temperature response of mesophyll conductance:Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo.Plant Physiology,2002,130:1992-1998
    [28] Walcroft A,Le Roux X,Diaz-Espejo A,et al.Effects of crown development on leaf irradiance,leaf morphology and photosynthetic capacity in a peach tree.Tree Physio-logy,2002,22:929-938
    [29] Zhao J-F (赵俊福),Tan Z-H (谭正洪),Song Q-H (宋清海),et al.Comparison on photosynthesis parameters of canopy trees and lianas in a tropical rain forest,Xishuangbanna,China.Journal of Yunnan University (云南大学学报:自然科学版),2012,34(1):120-124 (in Chinese)
    [30] Xiao YH,Liu SR,Tong FC,et al.Dominant species in subtropical forests could decrease photosynthetic N allocation to carboxylation and bioenergetics and enhance leaf construction costs during forest succession.Frontiers in Plant Science,2018,9:117,doi:10.3389/fpls.2018.00117
    [31] Sun G-T (孙谷畴),Zhao P (赵平),Zeng X-P (曾小平).Photosynthetic acclimation to growth-irradiance in two tree species of Magnoliaceae.Acta Ecologica Sinica (生态学报),2004,24(6):1111-1117 (in Chinese)
    [32] Tang X-L (唐星林),Zhou B-Z (周本智),Zhou Y (周燕),et al.Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model.Chinese Journal of Applied Ecology (应用生态学报),2017,28(5):1482-1488 (in Chinese)
    [33] Wullschleger SD.Biochemical limitations to carbon assimilation in C3 plants:A retrospective analysis of the A/Ci curves from 109 species.Journal of Experimental Botany,1993,44:907-920
    [34] Chen Y-T (陈莹婷),Xu Z-Z (许振柱).Review on research of leaf economics spectrum.Chinese Journal of Plant Ecology (植物生态学报),2014,38(10):1135-1153 (in Chinese)
    [35] Wright IJ,Reich PB,Westoby M,et al.The worldwide leaf economics spectrum.Nature,2004,428:821-827
    [36] Flexas J,Ribas-Carbó M,Bota J,et al.Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration.New Phytologist,2006,172:73-82
    [37] Ethier GJ,Livingston NJ,Harrison DL,et al.Low stomatal and internal conductance to CO2 versus Rubisco deactivation as determinants of the photosynthetic decline of ageing evergreen leaves.Plant,Cell & Environment,2006,29:2168-2184
    [38] Zhang L-M (张雷明),Cao P-Y (曹沛雨),Zhu Y-P (朱亚平),et al.Dynamics and regulations of ecosystem light use efficiency in a broad-leaved Korean pine mixed forest,Changbai Mountain.Chinese Journal of Plant Ecology (植物生态学报),2015,39(12):1156-1165 (in Chinese)
    [39] Zhang J-H (张军辉),Yu G-R (于贵瑞),Han S-J (韩士杰),et al.Seasonal and interannual variations in CO2 flux of a Korean pine and broad-leaved mixed forest in Changbai Mountain.Science in China Series D-Earth Sciences (中国科学D辑:地球科学),2006,36(suppl.1):60-69 (in Chinese)
    [40] Zhang JH,Han SJ,Yu GR.Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest.Agricultural & Forest Meteorology,2006,137:150-165
    [41] Venturas MD,Sperry JS,Hacke UG.Plant xylem hydraulics:What we understand,current research,and future challenges.Journal of Integrative Plant Biology,2017,59:356-389
    [42] Woodruff DR,Mcculloh KA,Warren JM,et al.Impacts of tree height on leaf hydraulic architecture and stomatal control in Douglas-fir.Plant,Cell & Environment,2007,30:559-569

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700