一个基于主客体作用的超两亲分子自组装体系的构筑及其光调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Self- assembly and photo regulation of a supra- amphiphile based on host- guest interaction
  • 作者:郝姗姗 ; 翟巧雅 ; 赵莉 ; 徐宝财
  • 英文作者:HAO Shan-shan;ZHAI Qiao-ya;ZHAO Li;XU Bao-cai;School of Food and Chemical Engineering,Beijing Key Laboratory of Flavor Chemistry,Beijing Technology and Business University;
  • 关键词:超两亲分子 ; 自组装 ; 主客体作用 ; 偶氮苯 ; 光调控
  • 英文关键词:supra-amphiphile;;self-assembly;;host-guest interaction;;azobenzene;;photo regulation
  • 中文刊名:CHEM
  • 英文刊名:China Surfactant Detergent & Cosmetics
  • 机构:北京工商大学食品学院北京市食品风味化学重点实验室;
  • 出版日期:2017-01-22
  • 出版单位:日用化学工业
  • 年:2017
  • 期:v.47;No.293
  • 基金:国家自然科学基金资助项目(21403010,21676003);; 北京市教委科技计划面上项目(KM201510011007);北京市教委科技计划重点资助项目(KZ201510011010)
  • 语种:中文;
  • 页:CHEM201701001
  • 页数:6
  • CN:01
  • ISSN:14-1320/TQ
  • 分类号:8-13
摘要
合成了含偶氮苯和胆甾醇基团的分子Azo Chol,在主客体作用的驱动下与α-环糊精(α-CD)形成了一个超两亲分子Azo Chol/α-CD。利用透射电镜(TEM)、原子力显微镜(AFM)、激光共聚焦电子显微镜(CLSM)等实验手段证明了该超两亲分子在水溶液中自组装形成囊泡结构。偶氮苯基团在光照刺激下可以发生顺反异构的可逆变化,导致超两亲分子的解体和再次形成,进一步引起体系发生囊泡解体与再形成的可逆转变。这种具有光刺激响应的超分子结构的转变在智能材料领域可能具有潜在应用价值。
        A molecule containing azobenzene and cholesterol moieties( Azo Chol) was synthesized,which forms supra- amphiphile with α- cyclodextrin( α- CD) based on host- guest interaction between azo group andα- CD. The supra- amphiphile Azo Chol / α- CD self- assembled into vesicles in water,demonstrated by transmission electron microscopy( TEM),atomic force microscope( AFM) and confocal laser scanning microscope( CLSM). The azo group shows trans- cis photoisomerization by UV and visible light irradiation.Therefore,the supra- amphiphile Azo Chol / α- CD is photo- switchable,leading to the disassembly and re-assembly of vesicles irradiated by UV and visible light alternately. The supra- amphiphilic structure of the new material may display potential applications in field for development of smart materials.
引文
[1]Faul C F J.Ionic self-assembly for functional hierarchical nanostructured materials[J].Accounts of Chemical Research,2014,47:3428-3438.
    [2]Zhang Shuguang.Fabrication of novel biomaterials through molecular self-assembly[J].Nature Biotechnology,2003,21:1171-1178.
    [3]Ikkala O,Ten Brinke G.Hierarchical self-assembly in polymeric complexes:towards functional materials[J].Chemical Communications,2004,19:2131-2137.
    [4]Yin Haiqing,Zhou Zukang,Huang Jianbin,et al.Temperatureinduced micelle to vesicle transition in the sodium dodecylsulfate/dodecyltriethylammonium bromide system[J].Angewandte Chemie International Edition,2003,42:2188-2191.
    [5]Lin Yiyang,Wang Andong,Qiao Yan,et al.Rationally designed helical nanofibers via multiple non-covalent interactions:fabrication and modulation[J].Soft Matter,2010,6(9):2031-2036.
    [6]Rubio J,Alfonso I,Burguete M I,et al.Interplay between hydrophilic and hydrophobic interactions in the self-assembly of a Gemini amphiphilic pseudopeptide:from nano-spheres to hydrogels[J].Chemical Communications,2012,48:2210-2212.
    [7]Wang Chao,Wang Zhiqiang,Zhang Xi.Superamphiphiles as building blocks for supramolecular engineering:towards functional materials and surfaces[J].Small,2011,7:1379-1383.
    [8]Kang Yuetong,Liu Kai,Zhang Xi.Supra-amphiphiles:a new bridge between colloidal science and supramolecular chemistry[J].Langmuir,2014,30:5989-6001.
    [9]Hu Qida,Tang Guping,Chu P K.Cyclodextrin-based host-guest supramolecular nanoparticles for delivery:from design to applications[J].Accounts of Chemical Research,2014,47:2017-2025.
    [10]Das A,Ghosh S.Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores[J].Angewandte Chemie International Edition,2014,53:2038-2054.
    [11]Paramonov S E,Jun H W,Hartgerink J D.Self-assembly of peptideamphiphile nanofibers:the roles of hydrogen bonding and amphiphilic packing[J].Journal of the American Chemical Society,2006,128:7291-7298.
    [12]Li Wen,Kim Y,Li Jingfang,et al.Dynamic self-assembly of coordination polymers in aqueous solution[J].Soft Matter,2014,10:5231-5242.
    [13]Liu Kai,Yao Yuxing,Kang Yuetong,et al.A supramolecular approach to fabricate highly emissive smart materials[J].Scientific Reports,2013,3:2372-2378.
    [14]Tang Yong,Zhou Lipeng,Li Jiaxi,et al.Giant nanotubes loaded with artificial peroxidase centers:self-assembly of supramolecular amphiphiles as a tool to functionalize nanotubes[J].Angewandte Chemie International Edition,2010,49:3920-3924.
    [15]Liu Jing,Morikawa M A,Kimizuka N.Conversion of molecular information by luminescent nanointerface self-assembled from amphiphilic Tb(Ⅲ)complexes[J].Journal of the American Chemical Society,2011,133:17370-17374.
    [16]Wang Andong,Shi Wenyue,Huang Jianbin,et al.Adaptive soft molecular self-assemblies[J].Soft Matter,2015,12:337-357.
    [17]Yu Guocan,Jie Kecheng,Huang Feihe.Supramolecular amphiphiles based on host-guest molecular recognition motifs[J].Chemical Reviews,2015,115:7240-7303.
    [18]Harada A,Kobayashi R,Takashima Y,et al.Macroscopic self-assembly through molecular recognition[J].Nature Chemistry,2011,3:34-37.
    [19]Harada A,Takashima Y,Nakahata M.Supramolecular polymeric materials via cyclodextrin-guest interactions[J].Accounts of Chemical Research,2014,47:2128-2140.
    [20]Zhang Xiaomei,Guo Kun,Li Luohao,et al.Multi-stimuli-responsive magnetic assemblies as tunable releasing carriers[J].Journal of Materials Chemistry B,2015,3:6026-6031.
    [21]Nakahata M,Takashima Y,Yamaguchi H,et al.Redox-responsive self-healing materials formed from host-guest polymers[J].Nature Communications,2011,2:487-502.
    [22]Zou Jiong,Tao Fenggang,Jiang Ming.Optical switching of self-assembly and disassembly of noncovalently connected amphiphiles[J].Langmuir,2007,23:12791-12794.
    [23]Muraoka T,Koh C Y,Cui H,et al.Light-triggered bioactivity in three dimensions[J].Angewandte Chemie International Edition,2009,48:5946-5949.
    [24]Eastoe J,Wyatt P,Sanchez D M,et al.Photo-stabilised microemulsions[J].Chemical Communications,2005,22:2785-2786.
    [25]Vesperinas A,Eastoe J,Wyatt P,et al.Photoinduced phase separation[J].Journal of the American Chemical Society,2006,128:1468-1469.
    [26]Yamaguchi H,Kobayashi Y,Kobayashi R,et al.Photoswitchable gel assembly based on molecular recognition[J].Nature Communications,2012,3:19596-19600.
    [27]Lee S,Oh S,Lee J,et al.Stimulus-responsive azobenzene supramolecules:fibers,gels,and hollow spheres[J].Langmuir,2013,29:5869-5877.
    [28]Wang Yapei,Ma Ning,Zhang Zhixiang,et al.Photocontrolled reversible supramolecular assemblies of an azobenzene-containing surfactant withα-cyclodextrin[J].Angewandte Chemie International Edition,2007,46:2823-2826.
    [29]Lin Yiyang,Cheng Xinhao,Qiao Yan,et al.Creation of photo-modulated multi-state and multi-scale molecular assemblies via binarystate molecular switch[J].Soft Matter,2010,6:902-908.
    [30]Harada A.Cyclodextrin-based molecular machines[J].Accounts of Chemical Research,2001,34:456-464.
    [31]Li Wen,Park I,Kang S K,et al.Smart hydrogels from laterallygrafted peptide assembly[J].Chemical Communications,2012,48:8796-8798.
    [32]Hosta R L,Zhang Yan,Teo B M,et al.Cholesterol:a biological compound as a building block in bionanotechnology[J].Nanoscale,2013,5:89-109.
    [33]Wang Cheng,Chen Qun,Sun Fei,et al.Multistimuli responsive organogels based on a new gelator featuring tetrathiafulvalene and azobenzene groups:reversible tuning of the gel-sol transition by redox reactions and light irradiation[J].Journal of the American Chemical Society,2010,132:3092-3096.
    [34]Li Jingguo,Jiang Hao,Hu Wenlong,et al.Morphology modulation in an azobenzene based supramolecular amphiphiles system[J].Journal of Photochemistry and Photobiology A:Chemistry,2012,245:28-32.
    [35]宋冰蕾,赵剑曦.光敏季铵盐Gemini表面活性剂a4-6-m在气/液界面的吸附[J].物理化学学报,2009,25(10):2020-2025.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700