基于近红外差分吸收光谱技术的大气中水汽柱浓度反演
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Retrieve of Water Vapor Column Density in Atmosphere Based on Near Infrared Differential Optical Absorption Spectroscopy
  • 作者:王汝雯 ; 谢品华 ; 徐晋 ; 李昂
  • 英文作者:Wang Ruwen;Xie Pinhua;Xu Jin;Li Ang;Key Laboratory of Environmental Optics and Technology,Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;CAS Center for Excellence in Urban Atmospheric Environment,Institute of Urban Environment,Chinese Academy of Sciences;
  • 关键词:大气光学 ; 近红外差分吸收 ; 水汽测量 ; 光学遥感 ; 环境污染监测 ; 水汽空间分布
  • 英文关键词:atmospheric optics;;near-infrared differential optical absorption spectroscopy;;water vapor measurement;;optical remote sensing;;environmental pollution monitoring;;spatial distribution of water vapor
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:中国科学院安徽光学精密机械研究所环境光学与技术重点实验室;中国科学技术大学;中国科学院区域大气环境研究卓越创新中心;
  • 出版日期:2018-10-20 11:56
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.443
  • 基金:国家自然科学基金重点项目(41530644)
  • 语种:中文;
  • 页:GXXB201902001
  • 页数:8
  • CN:02
  • ISSN:31-1252/O4
  • 分类号:9-16
摘要
基于近红外被动差分吸收光谱技术(IR-DOAS)反演了大气中水汽柱浓度。从Hitran数据库中获取高分辨率截面,利用Voigt线型进行不同温压条件下的线性展宽,获得不同反演吸收截面。以仰角为90°的光谱作为参考谱,对光谱进行反演,获取垂直柱浓度。通过与太阳光度计(CE-318)进行对比发现,结果具有很好的趋势一致性,线性相关系数为0.99,且IR-DOAS的反演值与CE-318结果的差值在IR-DOAS反演误差范围内。将其应用于水汽斜柱浓度的空间分布获取发现,垂直方向水汽斜柱浓度随仰角的变化呈梯度变化,水平方向水汽斜柱浓度随观测方位角的变化几乎不变,分布均匀。
        The atmospheric water vapor column density is retrieved based on near infrared passive differential optical absorption spectroscopy technique(IR-DOAS). The high-resolution cross sections are obtained from the Hirtran database and Voigt profiles are used for linear broadening under different temperature and pressure conditions to obtained different inversion absorption cross section. The spectra with elevation angle of 90° is selected as reference spectra to retrieve H_2O column to obtain the vertical column density. Compared with solar photometer(CE-318), it is found that the results are in good trend consistency with IR-DOAS, and the linear correlation coefficient is 0.99. The differences between inversion values of IR-DOAS and CE-318 are within the range of inversion error of IR-DOAS. It is found that the slant column density of water vapor in vertical direction varies gradiently with elevation angle, while the slant column density of water vapor in horizontal direction nearly uniform with observation azimuth, and the distribution is uniform.
引文
[1] Held I M, Soden B J. Water vapor feedback and global warming[J]. Annual Review of Energy and the Environment, 2000, 25(1): 441-475.
    [2] Solomon S, Qin D, Manning M, et al. Technical summary, in: Climate change 2007: The physical science basis[M]. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change edited by: Solomon S, Qin D, Manning M, et al. Cambridge: Cambridge University Press, 2007: 40-66.
    [3] Myhre G, Shindell D, Bréon F M, et al. Anthropogenic and natural radiative forcing, in: Climate change 2013: The physical science basis[M]. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker T, Qin D, Plattner G-K, et al. Cambridge: Cambridge University Press, 2013: 659–740.
    [4] Beirle S, Lampel J, Wang Y, et al. The ESA GOME-Evolution “Climate” water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2[J]. Earth System Science Data, 2018, 10(1): 449-468.
    [5] Wagner T, Andreae M O, Beirle S, et al. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations[J]. Atmospheric Measurement Techniques, 2013, 6(1): 131-149.
    [6] Wagner T. El Niňoinduced anomalies in global data sets of total column precipitable water and cloud cover derived from GOME on ERS-2[J]. Journal of Geophysical Research, 2005, 110(D15): D15104.
    [7] Loyola D, Valks P, Ruppert T, et al. The 1997 El Niňo impact on clouds, water vapour, aerosols and reactive trace gases in the troposphere, as measured by the Global Ozone Monitoring Experiment[J]. Advances in Geosciences, 2006, 6: 267-272.
    [8] Wagner T, Beirle S, Grzegorski M, et al. Global trends (1996-2003) of total column precipitable water observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and their relation to near-surface temperature[J]. Journal of Geophysical Research, 2006, 111: D12102.
    [9] Mieruch S, No?l S, Bovensmann H, et al. Analysis of global water vapour trends from satellite measurements in the visible spectral range[J]. Atmospheric Chemistry and Physics, 2008, 8(3): 491-504.
    [10] Mieruch S, No?l S, Reuter M, et al. A new method for the comparison of trend data with an application to water vapor[J]. Journal of Climate, 2011, 24(12): 3124-3141.
    [11] Mieruch S, Schr?der M, No?l S, et al. Comparison of decadal global water vapor changes derived from independent satellite time series[J]. Journal of Geophysical Research-Atmospheres. 2014, 119(22): 489-499.
    [12] Filges A, Gerbig C, Chen H L, et al. The IAGOS-core greenhouse gas package: A measurement system for continuous airborne observations of CO2, CH4, H2O and CO[J]. Tellus B: Chemical and Physical Meteorology, 2015, 67(1): 27989.
    [13] Miloshevich L M, V?mel H, Whiteman D N, et al. Accuracy assessment and correction of Vaisala RS92 radiosonde water vapor measurements[J]. Journal of Geophysical Research, 2009, 114(D11): 305.
    [14] Schneider M, Romero P M,Hase F, et al. Continuous quality assessment of atmospheric water vapour measurement techniques: FTIR, Cimel, MFRSR, GPS, and Vaisala RS92[J]. Atmospheric Measurement Techniques, 2010, 3(2): 323-338.
    [15] Buchwitz M, Rozanov V V, Burrows J P. A near-infrared optimized DOAS method for the fast global retrieval of atmospheric CH4, CO, CO2, H2O, and N2O total column amounts from SCIAMACHY Envisat-1 nadir radiances[J]. Journal of Geophysical Research: Atmospheres, 2000, 105(D12): 15231-15245.
    [16] Krings T, Gerilowski K, Buchwitz M, et al. MAMAP-a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: retrieval algorithm and first inversions for point source emission rates[J]. Atmospheric Measurement Techniques, 2011, 4(9): 1735-1758.
    [17] Gerilowski K, Tretner A, Krings T, et al. MAMAP-a new spectrometer system for column-averaged methane and carbon dioxide observations from aircraft: instrument description and performance analysis[J]. Atmospheric Measurement Techniques, 2011, 4(2): 215-243.
    [18] Platt U, Stutz J. Differential absorption spectroscopy[M]//Platt U,Stutz J,eds. Physics of Earth and Space and Space Environments. Berlin, Heidelberg: Springer, 2008: 135-174.
    [19] Sun Y W, Liu W Q, Xie P H, et al. Measurement of atmospheric water vapor using infrared differential optical absorption spectroscopy[J]. Acta Physica Sinica, 2012, 61(14): 140705. 孙友文, 刘文清, 谢品华, 等. 红外差分光学吸收光谱技术测量环境大气中的水汽[J]. 物理学报, 2012, 61(14): 140705.
    [20] Liu J, Si F Q, Zhou H J, et al. Measurement of atmospheric water vapor column density with passive differential optical absorption spectroscopy technology[J]. Acta Optica Sinica, 2013, 33(8): 0801002. 刘进, 司福祺, 周海金, 等. 被动差分吸收光谱技术测量大气中水汽垂直柱浓度[J]. 光学学报, 2013, 33(8): 0801002.
    [21] Wagner T, Ibrahim O, Shaiganfar R, et al. Mobile MAX-DOAS observations of tropospheric trace gases[J]. Atmospheric Measurement Techniques, 2010, 3(1): 129-140.
    [22] Griffith D W T. Synthetic calibration and quantitative analysis of gas-phase FT-IR spectra[J]. Applied Spectroscopy, 1996, 50(1): 59-70.
    [23] Zhou B, Liu W Q, Liu F, et al. The determination of upper and lower limits of the differential optical absorption spectroscopy[J]. Journal of Applied Optics, 2001, 22(5): 25-28. 周斌, 刘文清, 刘峰, 等. 差分吸收光谱仪测量上下限的确定[J]. 应用光学, 2001, 22(5): 25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700