压力对交联聚乙烯-硅橡胶界面电痕破坏碳化深度的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Pressure on Carbonization Depth by Tracking Failure for Composite Interface of Cross-linked Polyethylene and Silicone Rubber
  • 作者:孟峥峥 ; 赵阿琴 ; 朱明正 ; 王浩鸣 ; 宋鹏先 ; 李旭 ; 陈新岗 ; 尹泽龙 ; 郝鸿凯 ; 古亮
  • 英文作者:MENG Zhengzheng;ZHAO Aqin;ZHU Mingzheng;WANG Haoming;SONG Pengxian;LI Xu;CHEN Xingang;YIN Zelong;HAO Hongkai;GU Liang;Tianjin Electric Power Research Institute of State Grid Tianjin Electric Power Company;Chongqing University of Technology;Chongqing Engineering Research Center of Energy Internet;
  • 关键词:交联聚乙烯 ; 硅橡胶 ; 复合界面 ; 电痕破坏 ; 碳化深度 ; 界面压力
  • 英文关键词:cross-linked polyethylene;;silicone rubber;;composite interface;;tracking failure;;carbonization depth;;interface pressure
  • 中文刊名:JYCT
  • 英文刊名:Insulating Materials
  • 机构:国网天津电力公司电力科学研究院;重庆理工大学;重庆市能源互联网工程研究中心;
  • 出版日期:2018-06-12 09:38
  • 出版单位:绝缘材料
  • 年:2018
  • 期:v.51
  • 基金:国家自然科学基金资助项目(51537008);; 国网天津电力科学研究院科技项目(2017Q82;SGTJDK00 PJJS1700091)
  • 语种:中文;
  • 页:JYCT201806015
  • 页数:5
  • CN:06
  • ISSN:45-1287/TM
  • 分类号:77-81
摘要
为了研究界面压力对电痕破坏的影响规律,以电缆专用交联聚乙烯-硅橡胶薄片叠压的复合界面为实验样品,建立了界面压力可调的电痕破坏实验平台,采集并分析了界面压力与复合界面电痕破坏碳化深度分布的数量关系,得到了界面压力对交联聚乙烯碳化分布的影响规律,并探讨了其影响机理。结果表明:界面压力越小,复合界面上交联聚乙烯表面的碳分布面积越大,碳化深度越浅;界面压力越大,交联聚乙烯表面的破坏面积越小,碳化深度越深。这种结果可能是界面中存在微气隙,这些微气隙具有一定的绝缘自恢复性,且对压力敏感以及微气隙的绝缘强度比固体有机绝缘低的缘故。
        In order to study the effect of interface pressure on the tracking failure, composite interface of XLPE and SIR laminates of cables was studied via a tracking failure experiment platform with adjustable interface pressure, the quantitative relationship between the interface pressure and the carbonization depth distribution of tracking failure was analyzed. The effect of interface pressure on carbonization distribution of XLPE was obtained and its mechanism was also discussed. The results show that the lower the interface pressure, the larger the distribution area of carbonization on the XLPE surface on the composite interface and the more shallow the carbonization depth. While the larger the interface pressure, the smaller the damage area on the XLPE surface, and the deeper the carbonization depth. This result may due to the existence of micro air-gap on the interface, which has a certain self-recover performance of insulation and is sensitive to pressure, and the insulation strength of the micro air-gap is lower than that of solid organic insulation.
引文
[1]李忠磊,杜伯学.高压直流交联聚乙烯电缆运行与研究现状[J].绝缘材料,2016,49(11):9-14.
    [2]LI S,YIN G,CHEN G,et al.Short-term breakdown and long-term failure in nanodielectrics:A review[J].IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(5):1523-1535.
    [3]郭灿新,张丽,钱勇,等.XLPE电力电缆中局部放电检测及定位技术的研究现状[J].高压电器,2009,45(3):56-60.
    [4]KANTAR E,PANAGIOTOPOULOS D,ILDSTAD E.Factors influencing the tangential AC breakdown strength of solid-solid interfaces[J].IEEE Transactions on Dielectrics and Electrical Insulation,2016,23(3):1778-1788.
    [5]柳松,彭嘉康,王霞,等.不同涂覆条件对XLPE/硅橡胶界面击穿强度的影响[J].绝缘材料,2013,46(5):66-69.
    [6]邹林,涂扬,孟永鹏,等.界面压强和表面粗糙度对聚乙烯与硅橡胶界面的局部放电的影响[J].绝缘材料,2014,47(3):94-98.
    [7]陈新岗,张超峰,古亮,等.XPLE-SIR界面粗糙度对界面放电光的影响[J].高压电器,2011,47(10):7-11.
    [8]夏岩松,骆立实,李永东,等.划痕类微孔对交联聚乙烯-硅橡胶界面电痕破坏的影响[J].高压电器,2011,47(12):109-114.
    [9]CHEN X G,GU L,HE X R,et al.Tracking failure process of XLPE-silicon rubber interface under impulse voltage[C]//2012 International Conference on High Voltage Engineering and Application.Shanghai,China:IEEE,2012:51-54.
    [10]DU B X,GU L.Effects of interfacial pressure on tracking failure between XLPE and silicon rubber[J].IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(6):1922-1930.
    [11]DU B X,GU L.Effects of interfacial pressure on tracking failure at XLPE cable joint by analyzing discharge light distribution[C]//2010 10th IEEE International Conference on Solid Dielectrics.Potsdam,Germany:IEEE,2010:1-4.
    [12]王霞,朱有玉,张宇巍,等.界面涂敷料对XLPE和SIR复合绝缘界面空间电荷特性的影响[J].高电压技术,2016,42(8):2382-2387.
    [13]DU B X,ZHU X H,GU L,et al.Effect of surface smoothness on tracking mechanism in XLPE-Si-rubber interfaces[J].IEEE Transactions on Dielectrics and Electrical Insulation,2011,18(1):176-181.
    [14]FOURNIER D,LAMARRE L.Effect of pressure and temperature on interfacial breakdown between two dielectric surfaces[C]//1992 Annual Report:Conference on Electrical Insulation and Dielectric Phenomena.Victoria,Canada:IEEE,1992:229-235.
    [15]古亮.交联聚乙烯—硅橡胶界面电痕破坏现象研究[D].天津:天津大学,2010.
    [16]王佩龙.高压电缆附件的电场及界面压力设计[J].电线电缆,2011(5):1-4.
    [17]柳松,彭嘉康,陈守直,等.高温对交联聚乙烯电缆/硅橡胶预制件接头界面压力影响的仿真研究[J].电线电缆,2014(1):10-13.
    [18]贾志东,张雨津,范伟男,等.10k V XLPE电缆冷缩中间接头界面压力计算分析[J].高电压技术,2017,43(2):661-665.
    [19]王成江,梁清雲,李如锋.界面微气隙大小对复合绝缘子绝缘性能的影响[J].水电能源科学,2016(4):186-190.
    [20]王亚,吕泽鹏,吴锴,等.高压直流XLPE电缆研究现状[J].绝缘材料,2014,47(1):22-25.
    [21]常文治,阎春雨,李成榕,等.硅橡胶/胶联聚乙烯界面金属颗粒沿面放电严重程度的评估[J].电工技术学报,2015,30(24):245-254,261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700