C/N对以消化污泥为碳源的反硝化效果影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Carbon/Nitrogen on Denitrification Using Primary Sludge Acidogenic Liquid as Carbon Sources
  • 作者:郭亮 ; 刘元军 ; 赵悦 ; 韩英越 ; 郭一丁
  • 英文作者:GUO Liang;LIU Yuan-Jun;ZHAO Yue;HAN Ying-Yue;GUO Yi-Ding;College of Environmental Science and Engineering,Ocean University of China;The Key Laboratory of Ocean Environmental Geology Engineering,Shandong Province,Ocean University of China;The Key Laboratory of Marine Environmental and Ecology,Ministry of Education,Ocean University of China;
  • 关键词:初沉污泥 ; 反硝化 ; 有机碳源 ; 发酵 ; 脱氮 ; 积分区域法
  • 英文关键词:primary sludge;;denitrification;;organic carbon;;acidogenic;;nitrogen removal;;fluorescence regional integration(FRI)
  • 中文刊名:QDHY
  • 英文刊名:Periodical of Ocean University of China
  • 机构:中国海洋大学环境科学与工程学院;中国海洋大学山东省海洋环境地质工程重点实验室;中国海洋大学海洋环境与生态教育部重点实验室;
  • 出版日期:2018-10-18
  • 出版单位:中国海洋大学学报(自然科学版)
  • 年:2018
  • 期:v.48;No.288
  • 基金:山东省自然科学基金项目(ZR2017MEE067);; 青岛市科技计划项目(16-5-1-20-jch);; 本科生研究发展计划项目(OUC-SRDP)资助~~
  • 语种:中文;
  • 页:QDHY201812013
  • 页数:6
  • CN:12
  • ISSN:37-1414/P
  • 分类号:96-101
摘要
利用初沉池污泥发酵液作为反硝化碳源可实现污泥减量化和资源化,同时可解决污水处理中碳源不足的问题。本研究在C/N为9,8,7,6,5,4,3的条件下,探究了NO-3—N和NO-2—N浓度在反硝化进程中的变化,以及SCOD、VFAs、蛋白质和总糖的利用效率,同时采用三维荧光光谱技术(EEM)结合积分区域法(FRI),分析进出水中各类有机物组分所占比例及利用情况。结果表明,最佳C/N为5,此时NO-3—N的去除率为98.7%,出水中NO-2—N浓度仅为0.2mg/L,SCOD浓度仅为38.2mg/L。初沉污泥发酵液含有大量的VFAs,利用率达96%以上。
        Primary sludge acidogenic liquid as carbon resource in denitrification can realize sludge reduction and recycling.It can also solve the problem of poor carbon source in wastewater treatment.Under the condition of C/N of 9,8,7,6,5,4 and 3,the concentration changes of NO-3—N and NO-2—N,the utilization efficiency of SCOD(Soluble chemical oxygen demand),VFAs(Volatile fatty acids),protein and carbohydrate during denitrification process were investigated.Three-dimensional fluorescence excitation-emission matrix(EEM)spectroscopy with fluorescence regional integration(FRI)was also used to analyze the proportion and utilization of various organic components in influent and effluent.The results showed that the optimal C/N was 5,the removal efficiency of NO-3—N was 98.7%,the concentrations of NO-2—N and SCOD in effluent were only 0.2 and 38.2 mg/L.Primary sludge acidogenic liquid contains a lot of VFAs,the utilization efficiency was more than 96%.
引文
[1]刘智晓,季民,郝赟,等.利用活性污泥水解发酵补充碳源优化脱氮除磷[J].中国给水排水,2013,29(4):12-16.Liu X Z,Ji M,Hao Y,et al.Application of activated sludge hydrolysis and fermentation to supplement of carbon source for optimized nutrient removal[J].China Water&Wastewater,2013,29(4):12-16.
    [2]吴一平.初沉污泥水解产酸及其利用研究[D].西安:西安建筑科技大学,2004.Wu Y P.The Study of Hydrolysis of Primary Sludge for Biological Nutrient Removal[D].Xi'an:Xi'an University of Architecture and Technology,2004.
    [3] Moser-Engeler R,Udert K M,Wild D,et al.Products from primary sludge fermentation and their suitability for nutrient removal[J].Water Science&Technology,1998,38(1):265-273.
    [4] Hu Z,Houweling D,Dold P.Biological nutrient removal in municipal wastewater treatment:new directions in sustainability[J].Journal of Environmental Engineering,2012,138(3):307-317.
    [5] Chanona J,Ribes J,Seco A,et al.Optimum design and operation of primary sludge fermentation schemes for volatile fatty acids production[J].Water Research,2006,40(1):53-60.
    [6] Yuan Q,Sparling R,Oleszkiewicz J A.Waste activated sludge fermentation:effect of solids retention time and biomass concentration[J].Water Research,2009,43(20):5180.
    [7] Liu F,Tian Y,Ding Y,et al.The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation[J].Bioresource Technology,2016,219:6-13.
    [8]曹艳晓,龙腾锐,傅婵媛,等.剩余污泥碱解上清液作为反硝化碳源的回用量实验研究[J].土木建筑与环境工程,2010,32(1):125-130.Cao X Y,Long T R,Fu C Y,et al.Recycling dosage analysis of alkaline-hydrolysis supernatant of WAS as carbon source for denitrification[J].Journal of Civil,Architectrual&Environment Engineering,2010,32(1):125-130.
    [9] GalíA,Joan Dosta A,Mataálvarez J.Use of hydrolyzed primary sludge as internal carbon source for denitrification in a SBR treating reject water via nitrite[J].Industrial&Engineering Chemistry Research,2006,45(22):7661-7666.
    [10] Guo W Q,Yang S S,Pang J W,et al.Application of low frequency ultrasound to stimulate the bio-activity of activated sludge for use as an inoculum in enhanced hydrogen production[J].Rsc Advances,2013,3(44):21848-21855.
    [11] Wan S,Xi B,Xia X,et al.Using fluorescence excitation-emission matrix spectroscopy to monitor the conversion of organic matter during anaerobic co-digestion of cattle dung and duck manure[J].Bioresource Technology,2012,123(2):439-444.
    [12]刘小静,吴晓燕,齐彩亚,等.三维荧光光谱分析技术的应用研究进展[J].河北工业科技,2012,29(6):422-425.Liu X J,Wu X Y,Qi C Y,et al.Applications of three-dimensional fluorescent spectroscopy analysis technology[J].Hebei Journal of Industrial Science and Technology,2012,29(6):422-425.
    [13] Guo Y L,Guo L,Sun M,et al.Effects of hydraulic retention time(HRT)on denitrification using waste activated sludge thermal hydrolysis liquid and acidogenic liquid as carbon sources[J].Bioresource Technology,2017,224:147-156.
    [14] Guo L,Zhao J,She Z L,et al.Effect of S-TE(solubilization by thermophilic enzyme)digestion conditions on hydrogen production from waste sludge[J].Bioresource Technology,2012,117(10):368-372.
    [15] Dubois M,Gilles K A,Hamilton J K,et al.Colorimetric method for determination of sugars and related substances[J].Analytical Chemistry,1956,28(3):350-356.
    [16] Yu G H,Wu M J,Luo Y H,et al.Fluorescence excitation-emission spectroscopy with regional integration analysis for assessment of compost maturity[J].Waste Management,2011,31(8):1729-1736.
    [17] Chen W,Westerhoff P,Leenheer J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environmental Science&Technology,2003,37(24):5701.
    [18] Guo L,Lu M,Li Q,et al.Three-dimensional fluorescence excitation-emission matrix(EEM)spectroscopy with regional integration analysis for assessing waste sludge hydrolysis treated with multi-enzyme and thermophilic bacteria[J].Bioresource Technology,2014,171:22-28.
    [19] Ge S J,Peng Y Z,Wang S Y,et al.Nitrite accumulation under constant temperature in anoxic denitrification process:The effects of carbon sources and COD/NO3-N[J].Bioresource Technology,2012,114(3):137-143.
    [20] Li X,Zhao J,Wang D,et al.An efficient and green pretreatment to stimulate short-chain fatty acids production from waste activated sludge anaerobic fermentation using free nitrous acid[J].Chemosphere,2016,144:160-168.
    [21] Barker D J,Stuckey D C.A review of soluble microbial products(SMP)in wastewater treatment systems[J].Water Research,1999,33(14):3063-3082.
    [22] Laspidou C S,Rittmann B E.A unified theory for extracellular polymeric substances,soluble microbial products,and active and inert biomass[J].Water Research,2002,36(11):2711-2720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700