改性聚乳酸/生物玻璃复合纳米纤维的结构与性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structure and Properties of Modified Poly-L- Lactic Acid/Bioglass Composite Nanofiber
  • 作者:倪茂君 ; 王静霞 ; 郭丹 ; 陈屿恒 ; 陈竹平 ; 彭朝荣
  • 英文作者:Maojun Ni;Jingxia Wang;Dan Guo;Yuheng Chen;Zhuping Chen;Chaorong Peng;Sichuan Institute of Atomic Energy;
  • 关键词:改性聚乳酸 ; 生物玻璃 ; 纳米纤维 ; 拉伸强度 ; 亲水性 ; 体外矿化
  • 英文关键词:modified poly lactic acid;;bioglass;;nanofiber;;tensile strength;;hydrophilicity;;in vitro mineralization
  • 中文刊名:GFZC
  • 英文刊名:Polymer Materials Science & Engineering
  • 机构:四川省原子能研究院;
  • 出版日期:2019-03-11 13:23
  • 出版单位:高分子材料科学与工程
  • 年:2019
  • 期:v.35
  • 基金:四川省科技支撑计划(2015SZ0089,2017SZ0101)
  • 语种:中文;
  • 页:GFZC201902011
  • 页数:6
  • CN:02
  • ISSN:51-1293/O6
  • 分类号:73-78
摘要
将辐照接枝改性聚乳酸(MPLLA)与纳米生物玻璃(NBG)复合,通过静电纺丝工艺制备MPLLA/NBG复合纳米纤维。利用红外光谱、扫描电镜、力学性能、表面接触角和体外矿化,研究聚乳酸接枝改性对复合纳米纤维结构及性能的影响。结果表明,辐射接枝改性有利于提高聚乳酸与NBG之间的相容性,减小纳米粉体团聚,纤维直径减小,分布变窄;复合纳米纤维横向拉伸强度均大于5.5 MPa,纵向拉伸强度从3.9 MPa提高到5.5 MPa,横向、纵向拉伸强度差距随接枝率增大而减小;PLLA/NBG与10%MPLLA/NBG表面水接触角20 s内无明显差异,20%MPLLA/NBG表面水接触角20 s内从134.2°降低至78.6°;接枝改性提高了复合纳米纤维矿化度,20%MPLLA/NBG在24 h内快速矿化,14d矿化度较PLLA/NBG与10%MPLLA/NBG分别提高7.88倍和6.18倍。
        MPLLA/NBG composite nanofibers were prepared by combination of irradiation grafting modified poly lactic acid(MPLLA) and nano-bioglass(NBG) though electrospinning technique. The effects of grafting modification of PLLA on structure and properties of the composite nanofibers were studied by FT-IR, SEM, mechanical test, contact angle and in vitro mineralization. The results show that the compatibility of PLLA and NBG can be improved by irradiation grafting of PLLA, the powder reuniting decreases as well as the fiber diameter and distribution. The transverse tensile strength of the composite nanofibers is all above 5.5 MPa and the longitudinal tensile strength increases from 3.9 MPa to 5.5 MPa. The transverse and longitudinal differences are decreased with the increasing of grafting ratio. There is no significant difference in the water contact angle of PLLA/NBG and 10%MPLLA/NBG within 20 s. While the water contact angle of 20%MPLLA/NBG decreases from 134.2° to 78.6° in 20 s, indicating the hydrophilicity increases. The in vitro mineralization property of composite nanofiber is improved through grafting modification. The 20% MPLLA/NBG is quickly mineralized in 24 h. And the degree of mineralization in 14 d is 7.88 and 6.18 times of PLLA/NBG and 10%MPLLA/NBG, respectively.
引文
[1] Przekora A, Palka K, Ginalska G.Chitosan/β-1,3-glucan /calcium phosphate ceramics composites-novel cell scaffolds for bone tissue engineering application[J]. J. Biotechnol., 2014, 182 /183: 46-53.
    [2] Ardeshirylajimi A, Farhadian S, Jamshidi A F, et al. Enhanced osteoconductivity of polyether-sulphone nanofibres loaded with bioactive glass nanoparticles in in vitro and in vivo models[ J]. Cell Proliferat., 2015, 48: 455-464.
    [3] Ma Z, Chen F, Zhu Y J, et al. Amorphous calcium phosphate/poly (D,L-lactic acid) composite nanofibers: electrospinning preparation and bio-mineralization[J]. J. Colloid Interface Sci., 2011, 359: 371-379.
    [4] Bruinink A, Bitar M, Pleskova M, et al. Addition of nanoscaled bioinspired surface features: a revolution for bone related implants and scaffolds? [J]. J. Biomed. Mater. Res., A, 2013, 102: 275-294.
    [5] Rentsch B, Bernhardt R, Scharnweber D, et al.Embroidered and surface coated poly-caprolactone-co-lactide scaffolds[J]. Biomaterial, 2012, 2: 158-165.
    [6] 方炜. 聚乳酸/生物玻璃引导骨再生膜制备及体外实验研究[D].广州:南方医科大学,2015. Fang W. Characterization of poly-l-lactic acid/bioactive glass guided bone regeneration membrane and in vitro cytology[D]. Guangzhou: Southern Medical University, 2015.
    [7] Ehsan R, Paula M W A, Robin A L D. Morphological examination of highly porous polylactic acid/Bioglass○R scaffolds produced via nonsolvent induced phase separation[J]. J. Biomed. Mater. Res., B, 2017, 105: 2433-2442.
    [8] 葛建华,王迎军,陈晓峰,等. 生物活性玻璃/PLA-PEG-PLA/聚乳酸组织工程支架在SBF溶液中的降解和矿化[J]. 复合材料学报,2013,30(6):96-100. Ge J H, Wang Y J, Chen X F, et al. Degradable performance and bio-mineralization function of bioglass/PLA-PEG-PLA/poly(lactic acid) tissue engineering scaffold in SBF[J]. Acta Materiae Compositae Sinica, 2013, 30(6): 96-100.
    [9] 方炜,曾曙光,高文峰. 氧等离子处理PLLA/BG引导骨再生膜生物相容性[J]. 南方医科大学学报,2015,35(4):567-572. Fang W, Zeng S G, Gao W F. Biocompatibility of poly-L-lactic acid/bioglass-guided bone regeneration membranes processed with oxygen plasma[J]. Journal of Southern Medical University, 2015, 35(4): 567-572.
    [10] Chen H, Peng C R, Yao Y Y, et al. Preparation and characterization of poly(L-lactide) membranes prepared by γ-radiation-induced grafting of N-vinyl pyrrolidone[J]. J. Appl. Polym. Sci., 2009, 114: 3152-3157.
    [11] Wei X, Jiang C. Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method[J]. Mater. Lett., 2007, 61: 3251-3253.
    [12] Lenka M, Frank A M. Preparation of SBF with different HCO3- content and its influence on the composition of biomimetic apatites[J]. Acta Biomater., 2006, 2: 181-189.
    [13] 徐建海,李梅,赵燕,等. 具有微纳米结构超疏水表面润湿性的研究[J]. 化学进展, 2006,18(11):1425-1433. Xu J H, Li M, Zhao Y, et al. Advance of wetting behavior research on the superhydrophobic surface with micro-and nano-structure[J]. Progress in Chemistry, 2006, 18(11): 1425-1433.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700