西藏错那洞电气石花岗岩中电气石化学组成、硼同位素特征及意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical and Boron Isotopic Composition, and Significance of Tourmaline from the Cuonadong Tourmaline Granite, Tibet
  • 作者:代作文 ; 李光明 ; 丁俊 ; 张林奎 ; 曹华文 ; 张志 ; 梁维
  • 英文作者:Dai Zuowen;Li Guangming;Ding Jun;Zhang Linkui;Cao Huawen;Zhang Zhi;Liang Wei;College of Earth Sciences,Chengdu University of Technology;Chengdu Center,China Geological Survey;
  • 关键词:西藏 ; 喜马拉雅 ; 错那洞 ; 淡色花岗岩 ; 电气石 ; 硼同位素 ; 岩石学 ; 壳源
  • 英文关键词:Tibet;;Himalaya;;Cuonadong;;leucogranite;;tourmaline;;Boron isotope;;petrology;;crust source
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:成都理工大学地球科学学院;中国地质调查局成都地质调查中心;
  • 出版日期:2019-03-25 09:03
  • 出版单位:地球科学
  • 年:2019
  • 期:v.44
  • 基金:扎西康铅锌-稀有资源基地深部探测与勘查示范项目(No.2018YFC0604103)
  • 语种:中文;
  • 页:DQKX201906008
  • 页数:11
  • CN:06
  • ISSN:42-1874/P
  • 分类号:83-93
摘要
为了对西藏错那洞电气石花岗岩源区进一步约束,利用显微镜、电子探针和激光剥蚀多接收等离子质谱仪,对错那洞电气石花岗岩中电气石的形态、成分及硼同位素组成进行了研究.结果表明,错那洞电气石花岗岩中的电气石为碱族黑/铁电气石,直接结晶自富硼熔体,与熔体之间未发生明显的硼同位素分馏.电气石δ11B值主要在-6.91‰~-9.17‰之间,与大陆地壳平均δ11B值(-10‰±3‰)相近,表明错那洞电气石花岗岩主要源自变质沉积岩的部分熔融.然而,与起源于变质沉积岩的花岗岩相比,样品的δ11B值明显偏高,而与前人报道的雅拉香波淡色花岗岩(源自石榴石角闪岩部分熔融)的δ11B值相似.因此,错那洞电气石花岗岩源区中,除了变质沉积岩外,可能还混入了少量石榴石角闪岩.
        In order to further constrain the source of the Cuonadong tourmaline granite, Tibet, morphology, chemical and isotopic composition of the tourmaline were studied by means of the microscope, electron probe, laser ablation multi-collector inductively coupled plasma mass spectrometer. The results indicate that the tourmaline from the Cuonadong tourmaline granite belongs to alkali group, and is schorl, which crystallized from boron-rich melts, indicating no obvious boron isotope fractionation between tourmaline and the melts has occurred.δ11 B values of the tourmaline from the Cuonadong tourmaline granite range from-6.91‰to-9.17‰, which are close to the average δ11 B value(-10‰ ± 3‰) of the continental crust, implying that the Cuonadong tourmaline granite was derived from partial melting of metasedimentay rock. However, δ11 B values of the tourmaline from the Cuonadong tourmaline granite is much higher relative to granites derived from metasedimentary rock, and similar to δ11 B values of Yardoi leucogranite reported by previous research, which was originated from garnet-amphibolite. Thus, besides metasedimentary rock, there was probably a small amount of garnet-amphibolite present in the source region of the the Cuonadong tourmaline granite.
引文
Chaussidon,M.,Jambon,A.,1994.Boron Content and Isotopic Composition of Oceanic Basalts:Geochemical and Cosmochemical Implications.Earth and Planetary Science Letters,121(3-4):731-733.
    Dai,J.Q.,Li,G.R.,Guo,F.S.,et al.,2018.Chemical Components and Boron Isotopic Composition of Tourmaline of Uranium Bearing Porphyroclastic Lava in Xiangshan,Jiangxi.Journal of Jilin University(Earth Science Edition),48(5):1378-1393(in Chinese with English abstract).
    Dutrow,B.L.,Henry,D.J.,2011.Tourmaline:A Geologic DVD.Elements,7(5):301-306.https://doi.org/10.2113/gselements.7.5.301
    Fu,J.G.,Li,G.M.,Wang,G.H.,et al.,2018.Synchronous Granite Intrusion and E-W Extension in the Cuonadong Dome,Southern Tibet,China:Evidence from Field Observations and Thermochronologic Results.International Journal of Earth Sciences,107(6):2023-2041.https://doi.org/10.1007/s00531-018-1585-y
    Gou,G.N.,Wang,Q.,Wyman,D.A.,et al.,2017.In Situ Boron Isotopic Analyses of Tourmalines from Neogene Magmatic Rocks in the Northern and Southern Margins of Tibet:Evidence for Melting of Continental Crust and Sediment Recycling.Solid Earth Sciences,2(2):43-54.https://doi.org/10.1016/j.sesci.2017.03.003
    Guo,H.F.,Xia,X.P.,Wei,G.J.,et al.,2014.LA-MC-ICPMSIn-Situ Boron Isotope Analyses of Tourmalines from the Shangbao Granites(Southern Hunan Province)and Its Geological Significance.Geochimica,43(1):11-19(in Chinese with English abstract).
    Hawthorne,F.C.,Henrys,D.J.,1999.Classification of the Minerals of the Tourmaline Group.European Journal of Mineralogy,11(2):201-216.https://doi.org/10.1127/ejm/11/2/0201
    Henry,D.J.,Dutrow,B.L.,1996.Metamorphic Tourmaline and Its Petrologic Applications.Reviews in Mineralogy and Geochemistry,33(1):503-557.
    Henry,D.J.,Guidotti,C.V.,1985.Tourmaline as a Petrogenetic Indicator Mineral:An Example from the StauroliteGrade Metapelites of NW Maine.American Mineralogist,70(1-2):1-15.
    Henry,D.J.,Novák,M.,Hawthorne,F.C.,et al.,2011.Nomenclature of the Tourmaline-Supergroup Minerals.American Mineralogist,96(5-6):895-913.https://doi.org/10.2138/am.2011.3636
    Hou,J.L.,Wang,D.H.,Li,J.K.,et al.,2017.In-Situ Boron Isotopic Analysis and Its Geological Significance of Tourmalines from Zhongzuo Pegmatite Veins in Quyang Area of Hebei,China.Journal of Earth Sciences and Environment,39(6):751-760(in Chinese with English abstract).
    Hou,K.J.,Li,Y.H.,Xiao,Y.K.,et al.,2010.In Situ Boron Isotope Measurements of Natural Geological Materials by LA-MC-ICP-MS.Chinese Science Bulletin,55(29):3305-3311.
    Hou,Z.Q.,Zheng,Y.C.,Zeng,L.S.,et al.,2012.Eocene-Oligocene Granitoids in Southern Tibet:Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen.Earth and Planetary Science Letters,349-350:38-52.https://doi.org/10.1016/j.epsl.2012.06.030
    Hu,G.Y.,Zeng,L.S.,Gao,L.E.,et al.,2018.Diverse Magma Sources for the Himalayan Leucogranites:Evidence from B-Sr-Nd Isotopes.Lithos,314-315:88-99.https://doi.org/10.1016/j.lithos.2018.05.022
    Huang,C.M.,Zhao,Z.D.,Li,G.M.,et al.,2017.Leucogranites in Lhozag,Southern Tibet:Implications for the Tectonic Evolution of the Eastern Himalaya.Lithos,294-295:246-262.https://doi.org/10.1016/j.lithos.2017.09.014
    Jiang,S.Y.,2000.Boron Isotope and Its Geological Applications.Geological Journal of China Universities,6(1):1-16(in Chinese with English abstract).
    Jiang,S.Y.,Palmer,M.R.,1998.Boron Isotope Systematics of Tourmaline from Granites and Pegmatites:A Synthesis.European Journal of Mineralogy,10(6):1253-1266.https://doi.org/10.1127/ejm/10/6/1253
    Jiang,S.Y.,Radvanec,M.,Nakamura,E.,et al.,2008.Chemical and Boron Isotopic Variations of Tourmaline in the Hnilec Granite-Related Hydrothermal System,Slovakia:Constraints on Magmatic and Metamorphic Fluid Evolution.Lithos,106(1-2):1-11.https://doi.org/10.1016/j.lithos.2008.04.004
    Jiang,S.Y.,Yu,J.M.,Ling,H.F.,et al.,2000a.Boron Isotope as a Tracer in the Study of Crust-Mantle Evolution and Subduction Processes.Earth Science Frontiers,7(2):391-399(in Chinese with English abstract).
    Jiang,S.Y.,Yu,J.M.,Ni,P.,et al.,2000b.Tourmaline:A Sensitive Tracer for Petrogenesis and Minerogenesis.Geological Review,46(6):594-604(in Chinese with English abstract).
    King,J.,Harris,N.,Argles,T.,et al.,2011.Contribution of Crustal Anatexis to the Tectonic Evolution of Indian Crust beneath Southern Tibet.Geological Society of America Bulletin,123(1-2):218-239.
    Liang,W.,Zhang,L.K.,Xia,X.B.,et al.,2018.Geology and Preliminary Mineral Genesis of the Cuonadong W-Sn Polymetallic Deposit,Southern Tibet,China.Earth Science,43(8):2742-2754(in Chinese with English abstract).
    London,D.,Manning,D.A.C.,1995.Chemical Variation and Significance of Tourmaline from Southwest England.Economic Geology,90(3):495-519.https://doi.org/10.2113/gsecongeo.90.3.495
    Mao,J.W.,Wang,P.A.,Wang,D.H.,et al.,1993.The Tracer of Tourmaline for Rock-Forming and Metallogenic Environments and Its Applied Conditions.Geological Review,39(6):497-507(in Chinese with English abstract).
    Marschall,H.R.,Jiang,S.Y.,2011.Tourmaline Isotopes:No Element Left behind.Elements,7(5):313-319.https://doi.org/10.2113/gselements.7.5.313
    Marschall,H.R.,Ludwig,T.,Altherr,R.,et al.,2006.Syros Metasomatic Tourmaline:Evidence for very High-δ11BFluids in Subduction Zones.Journal of Petrology,47(10):1915-1942.https://doi.org/10.1093/petrology/egl031
    Pirajno,F.,Smithies,R.H.,1992.The FeO/(FeO+MgO)Ratio of Tourmaline:A Useful Indicator of Spatial Variations in Granite-Related Hydrothermal Mineral Deposits.Journal of Geochemical Exploration,42(2-3):371-381.https://doi.org/10.1016/0375-6742(92)90033-5
    Trumbull,R.B.,Krienitz,M.S.,Gottesmann,B.,et al.,2008Chemical and Boron-Isotope Variations in Tourmalines from an S-Type Granite and Its Source Rocks:The Erongo Granite and Tourmalinites in the Damara Belt,Namibia.Contributions to Mineralogy and Petrology,155(1):1-18.https://doi.org/10.1007/s00410-007-0227-3
    van Hinsberg,V.J.,Henry,D.J.,Marschall,H.R.,2011.Tourmaline:An Ideal Indicator of Its Host Environment.The Canadian Mineralogist,49(1):1-16.https://doi.org/10.3749/canmin.49.1.1
    Wu,F.Y.,Liu,Z.C.,Liu,X.C.,et al.,2015.Himalayan Leucogranite:Petrogenesis and Implications to Orogenesis and Plateau Uplift.Acta Petrologica Sinica,31(1):1-36(in Chinese with English abstract).
    Xie,J.J.,Qiu,H.N.,Bai,X.J.,et al.,2018.Geochronological and Geochemical Constraints on the Cuonadong Leucogranite,Eastern Himalaya.Acta Geochimica,37(3):347-359.https://doi.org/10.1007/s11631-018-0273-8
    Yang,S.Y.,Jiang,S.Y.,2012.Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan VolcanicIntrusive Complex,Southeast China:Evidence for Boron Mobilization and Infiltration during Magmatic-Hydrothermal Processes.Chemical Geology,312:177-189.https://doi.org/10.1016/j.chemgeo.2012.04.026
    Yang,S.Y.,Jiang,S.Y.,Palmer,M.R.,2015.Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites,South Tibetan Himalaya:Implication for Their Formation from B-Rich Melt to Hydrothermal Fluids.Chemical Geology,419:102-113.https://doi.org/10.1016/j.chemgeo.2015.10.026
    Yin,A.,Harrison,T.M.,2000.Geologic Evolution of the Himalayan-Tibetan Orogen.Annual Review of Earth and Planetary Sciences,28(1):211-280.https://doi.org/10.1146/annurev.earth.28.1.211
    Zeng,L.S.,Liu,J.,Gao,L.E.,et al.,2009.Early Oligocene Anatexis in the Yardoi Gneiss Dome,Southern Tibet and Geological Implications.Chinese Science Bulletin,54(1):104-112.
    Zhang,L.K.,Zhang,B.,Zhang,B.H.,et al.,2018.Chemical and Boron Isotopic Composition of Hydrothermal Tourmaline from Nanyangtian Tungsten Deposit,Yunnan:Implications for Ore Genesis.Mineral Deposits,37(3):481-501(in Chinese with English abstract).
    Zhang,Z.M.,Kang,D.Y.,Ding,H.X.,et al.,2018.Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites.Earth Science,43(1):82-98(in Chinese with English abstract).
    Zheng,Y.C.,Hou,Z.Q.,Fu,Q.,et al.,2016.Mantle Inputs to Himalayan Anatexis:Insights from Petrogenesis of the Miocene Langkazi Leucogranite and Its Dioritic Enclaves.Lithos,264:125-140.https://doi.org/10.1016/j.lithos.2016.08.019
    戴加祺,黎广荣,郭福生,等,2018.江西相山铀矿田含铀碎斑熔岩中电气石化学成分及硼同位素组成特征.吉林大学学报(地球科学版),48(5):1378-1393.
    郭海锋,夏小平,韦刚健,等,2014.湘南上堡花岗岩中电气石LA-MC-ICPMS原位微区硼同位素分析及地质意义.地球化学,43(1):11-19.
    侯江龙,王登红,李建康,等,2017.河北曲阳地区中佐伟晶岩脉中电气石原位硼同位素分析及其意义.地球科学与环境学报,39(6):751-760.
    蒋少涌,2000.硼同位素及其地质应用研究.高校地质学报,6(1):1-16.
    蒋少涌,于际民,凌洪飞,等.2000a.壳幔演化和板块俯冲作用过程中的硼同位素示踪.地学前缘,7(2):391-399.
    蒋少涌,于际民,倪培,等,2000b.电气石--成矿作用的灵敏示踪剂.地质论评,46(6):594-604.
    梁维,张林奎,夏祥标,等,2018.藏南地区错那洞钨锡多金属矿床地质特征及成因.地球科学,43(8):2742-2754.
    毛景文,王平安,王登红,等,1993.电气石对成岩成矿环境的示踪性及应用条件.地质论评,39(6):497-507.
    吴福元,刘志超,刘小驰,等,2015.喜马拉雅淡色花岗岩.岩石学报,31(1):1-36.
    张林奎,张彬,张斌辉,等,2018.云南南秧田钨矿床电气石的成分和硼同位素特征及成矿意义.矿床地质,37(3):481-501.
    张泽明,康东艳,丁慧霞,等,2018.喜马拉雅造山带的部分熔融与淡色花岗岩成因机制.地球科学,43(1):82-98.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700