基于Ecopath模型的南湾水库生态系统结构与功能定量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantitative Analysis of the Ecosystem Structure and Function of the Nanwan Reservoir Based on Ecopath Model
  • 作者:王瑞 ; 米玮洁 ; 李睿 ; 曾鹏 ; 胡菊香
  • 英文作者:WANG Rui;MI Weijie;LI Rui;ZENG Peng;HU Juxiang;Institute of Hydroecology, Ministry of Water Resources and Chinese Academy of Sciences, Key Laboratory of Ecological Impacts of Hydraulic-Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources;Reservoir Administration of Nanwan;
  • 关键词:Ecopath模型 ; 生态系统 ; 定量分析 ; 南湾水库
  • 英文关键词:Ecopath model;;ecosystem;;quantitative analysis;;Nanwan reservoir
  • 中文刊名:SXHC
  • 英文刊名:Ecology and Environmental Monitoring of Three Gorges
  • 机构:水利部中国科学院水工程生态研究所水利部水工程生态效应与生态修复重点实验室;河南信阳市南湾水库管理局;
  • 出版日期:2018-12-28
  • 出版单位:三峡生态环境监测
  • 年:2018
  • 期:v.3;No.11
  • 基金:国家自然科学基金(51279112)
  • 语种:中文;
  • 页:SXHC201804008
  • 页数:10
  • CN:04
  • ISSN:50-1214/X
  • 分类号:41-50
摘要
定量分析水库生态系统结构与功能,可为水库水生态保护提供有效的理论支撑。本研究选取鲢鳙高产水库——河南信阳南湾水库为研究对象,根据2015-2016年南湾水库水生生物的调查结果,应用Ecosim 6.5软件构建南湾水库生态系统的Ecopath食物网模型。模型由21个功能组组成,包括了初级生产者、初级消费者、主要鱼类和碎屑等,基本覆盖了生态系统能量流动的全过程。研究结果显示:南湾水库生态系统中各功能组分数营养级(Fractional Trophic Level,FTL)为1.000~3.680,营养级最高的为肉食性鱼类翘嘴鲌(3.680)。食物网能量传递有两条主要的营养传递途径,即碎屑食物链和牧食食物链,两者传递的能量相当。交互营养分析结果表明,商业捕捞对生态系统中大部分功能组均有显著负面效应,且效应强度高于捕食、竞争等种间关系。对生态系统总体特征分析发现,南湾水库生态系统的总初级生产力(Total PrimaryProduction,TPP)与总呼吸量(Total Respiration,TR)的比值(TPP/TR)、系统连接指数(Connectance Index,CI)和系统杂食性指数(System Omnivory Index,SOI)都表明该生态系统相对成熟,较为稳定。但营养级Ⅰ的利用率低下,大量的初级生产力未进入较高营养级的食物链中进行物质循环,造成生态系统中能量流动的滞缓。这可能与库区鲢鳙放养比例的不合理及无选择性捕捞有关。因此,在库区管理过程中应该科学调整鱼类群落结构,合理适当捕捞,充分发挥鱼类养殖在维持生态系统稳定中的正面效应。
        Quantitative analysis of ecosystem structure and function can provide powerful theoretical support forthe conservation of reservoir ecosystem. Based on the survey conducted during 2015—2016 in the Nanwan reser-voir in Xinyang, Henan, which has high yield of silver carp and bighead carp, a mass-balanced ecosystem model was constructed using Ecopath with Ecosim 6.5 for the Nanwan reservoir. The model comprised of 21 function-al groups, including primary producers, primary consumers, the main species of fishes and detritus, and coveringthe entire process of ecosystem energy flow. The results show that the trophic level of each functional componentin the ecosystem varies from 1.000 to 3.680, and the topmouth culter has the highest trophic level(3.680). Twotrophic pathways are found,i. e. the detrital pathway and grazing pathway, which has the same amount of ener-gy flow. The results of mixed trophic impacts show that commercial fishing has significant negative effects onmost functional groups in the ecosystem, and the effect intensity is stronger than that of the interspecific relation-ships such as predation and interspecific competition. The comprehensive analysis of multiple indices, includingtotal primary production/total respiration(TPP/TR), connectance index(CI) and system omnivory index(SOI), in-dicates that the reservoir ecosystem is relatively mature and stable. As a consequence of the low ecotrophic effi-ciency for primary producer, a large amount of primary productivity did not enter the higher trophic level of foodchain for matter cycle. This may be related to the unreasonable fish composition and non-selective fishing.Therefore, in the management of the reservoir, the fish community structure should be scientifically adjusted togive full play to the positive effects of fish farming in maintaining ecosystem health.
引文
[1]仝龄.Ecopath--一种生态系统能量平衡评估模式[J].渔业科学进展,1999(2):103-107.
    [2]PAULY D,CHRISTENSEN V,WALTERS C.Ecopath,Ecosim,and Ecospace as tools for evaluating ecosystem impact of fisheries[J].Ices Journal of Marine Science,2000,57(3):697-706.
    [3]PAULY D,CHRISTENSEN V,DALSGAARD J.Fishing down marine food webs[J].Science,1998,279(6):860-863.
    [4]STEVENS J D,BONFIL R,DULVY N K,et al.The effects of fishing on sharks,rays and chimaeras(chondrichthyans),and the implications for marine ecosystems[J].Ices Journal of Marine Science,2000,57:476-494.
    [5]KITCHELL J F,COX S P,HARVEY C J,et al.Sustainability of the Lake Superior fish community:Interactions in a food web context[J].Ecosystems,2000,3(6):545-560.
    [6]CHRISTENSEN V,WALTERS C J.Ecopath with Ecosim:Methods,capabilities and limitations[J].Ecological modelling,2004,172(2/3/4):109-139.
    [7]CHRISTENSEN V,WALTERS C J,PAULY D.Ecopath with Ecosim:A user’s guide[M].Canada:Fisheries Centre,University of British Columbia,2005.
    [8]叶少文.长江中游浅水湖泊鱼类群落和系统营养网络模型的研究[D].武汉:中国科学院水生生物研究所,2007.
    [9]黄祥飞.湖泊生态调查观测与分析[M].北京:中国标准出版社,2000.
    [10]郭传波.中国湖泊鱼类分布格局及生态系统结构和功能的模型研究[D].武汉:中国科学院大学,2014.
    [11]MORISSETLE L,HAMMILL M O,SAVENKOFF C.The trophic role of marine mammals in the northern Gulf of St.Lawrence[J].Marine Mammal Science,2006,22(1):74-103.
    [12]王华,逄勇,刘申宝,等.沉水植物生长影响因子研究进展[J].生态学报,2008,28(8):3958-3968.
    [13]陈中义,雷泽湖,周进,等.梁子湖六种沉水植物种群数量和生物量周年动态[J].水生生物学报,2000,24(6):582-588.
    [14]王晓平,王玉兵,杨桂军,等.不同鱼类对沉水植物生长的影响[J].湖泊科学,2016,28(6):1354-1360.
    [15]YANG Q.Studies on the interaction of submerged plant and phytoplankton in eutrophic waters[J].Journal of Lake Science,1996,8(Z1):17-24.
    [16]SHINOHARA R,ASAEDA T,ISOBE M.Effects of phytoplankton on the distribution of submerged macrophytes in a small canal[J].Landscape and Ecological Engineering,2014,10(1):115-121.
    [17]CYR H and DOWNING J A.The abundance of phytophilous invertebrates on different species of submerged macrophytes[J].Freshwater Biology,1998,20(3):365-374.
    [18]刘恩生.生物操纵与非经典生物操纵的应用分析及对策探讨[J].湖泊科学,2010,22(3):307-314.
    [19]李云凯,刘恩生,王辉,等.基于Ecopath模型的太湖生态系统结构与功能分析[J].应用生态学报,2014,25(7):2033-2040.
    [20]CHISLOCK M F,DOSTER E,ZITOMER R A,et al.Eutrophication:Causes,consequences,and controls in aquatic ecosystems[J].Nature Education Knowledge,2013,4(4):1-8.
    [21]MCDOWELL R W,HAMILTON D P.Nutrients and eutrophication:Introduction[J].Marine&Freshwater Research,2013,64(5):3-6.
    [22]ALLAN J D,ABELL R,HOGAN Z,et al.Overfishing of Inland Waters[J].Bioscience,2005,55(12):1041-1051.
    [23]ODUM E P,MANSUETI R.Fundamental of Ecology[J].Quarterly Review of Biology,1960,35(2):142-143.
    [24]CHRISTENSEN V.Ecosystem maturity-towards quantification[J].Ecological Modelling,1995,77(1):3-32.
    [25]刘恩生,李云凯,臧日伟,等.基于Ecopath模型的巢湖生态系统结构与功能初步分析[J].水产学报,2014,38(3):417-425.
    [26]李云凯,宋兵,陈勇,等.太湖生态系统发育的Ecopath with Ecosim动态模拟[J].中国水产科学,2009,16(2):257-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700