基于荧光光谱特性的水热条件对农田黑土富里酸结构的影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Study of Hydrothermal Conditions's Impact on the Structure of Black Soil Fulvic Acid Based on the Fluorescence Spectral Characteristics
  • 作者:谷思玉 ; 李悦 ; 蔡越桐 ; 郭兴军 ; 朱玉伟 ; 于雪薇 ; 杨艳 ; 张会慧
  • 英文作者:GU Si-yu;LI Yue;CAI Yue-tong;GUO Xing-jun;ZHU Yu-wei;YU Xue-wei;YANG Yan;ZHANG Hui-hui;College of Resources and Environment,Northeast Agricultural University;
  • 关键词:水热条件 ; 黑土 ; 富里酸 ; 荧光光谱特征 ; 腐殖化
  • 英文关键词:Hydrothermal conditions;;Black soil;;Fulvic acid;;Fluorescence spectrum characteristic;;Humification
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:东北农业大学资源与环境学院;
  • 出版日期:2018-02-15
  • 出版单位:光谱学与光谱分析
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金项目(51178090,51378097);; 中国农科院创新工程(CAAS-XTCX2016008);; “十三五”粮丰工程项目(2017YFD0300502-2)资助
  • 语种:中文;
  • 页:GUAN201802030
  • 页数:6
  • CN:02
  • ISSN:11-2200/O4
  • 分类号:162-167
摘要
为探讨水热条件对农田黑土富里酸(FA)腐殖化程度的影响,选取黑龙江省不同纬度带黑土区域北安、海伦、宾县、双城的农田土壤,对其腐殖物质进行分组测定,且分析了富里酸的荧光光谱特性。结果表明:从北向南,随着水热分布强度增加,农田黑土腐殖酸含量依次降低,北安为9.90g·kg~(-1)、海伦为8.71g·kg~(-1)、宾县为5.48g·kg~(-1)、双城为4.70g·kg~(-1),胡富比显著降低,分别为1.46,1.42,0.80和0.74;不同区域富里酸三维荧光图谱差异值分析表明,与北安相比,其它区域Peak A和Peak C荧光强度均明显减少,区域积分(FRI)方法表明,从北向南,可见光区类富里酸物质含量显著下降;平行因子分析(PARAFAC)表明,各区域土壤FA可以分为相对分子质量较小、结构简单的C1及分子结构相对复杂、缩合度较高的C2两个组分,随着水热梯度增加,C1组分明显增加,而C2组分则呈相反趋势,C1组分的增加主要来源于C2组分降解的中间产物,且较高比例的C1组分促进了FA在土壤中分解;二维同步扫描图谱表明,随着纬度降低,FA结构趋于简单化,黑土中FA分解途径是组分中分子量较大、结构复杂的物质优先裂解,形成结构相对简单的、缩合度较高的小分子化合物,然后进一步彻底分解。综上,北安、海伦、宾县、双城农田黑土的FA浓度及腐殖化程度呈下降趋势;水热梯度增加,不利于土壤中FA积累,加速了土壤FA流失。
        In order to understand the influence of hydrothermal conditions to the humification degree of fulvic acid in field blacksoil,four samples Beian,Hailun,Binxian and Shuangcheng which were taken from four typical black soil regions in Heilongjiang,China,were selected for this study.In this study,the fulvic acid substances in these samples were extracted,and characterized their fluorescence properties.The results showed that,from north to south,as the increase of hydrothermal distribution,the concentration of fulvic acid substances,in Beian,Hailun,Binxian and Shuangcheng,presented a decrease trend.And the amount of the decrease were 9.90,8.71,5.48 and 4.70 g·kg~(-1),respectively.Humic acid and fulvic acid ratio is on the decline were 1.46,1.42,0.80 and 0.74 in turn,Higher proportion of fulvic acid leading to Humus structure tends to be more simple.The results of excitation-emission matrix regional integration analysis further confirmed that the intensity of fluorescence peak A and peak C in Beian presented the highest values and intensity of fluorescence peakA and peak C in Shuangcheng presented the lowest values in these four study regions.Compared with Beian,Hailun and Binxian study regional intensity of fluorescence Peak C was lower,and Regional integration(FRI)method showed that,from north to south,as the increase of hydrothermal distribution,visible light area like fulvic acid material significantly reduced;Parallel factor analysis(PARAFAC)results showed that the fulvic acid substances in these four study regions could be divided into two components.Component C1 was characterized as simple structure and low molecular weights substances,and Component C2 was regarded as complex structure and high molecular weights substances.With the increase of hydrothermal distribution,Component C1 was on the rise and Component C2 presented a decrease trend.The increase of Component C1 mainly came from the degradation of the intermediate of Component C2,and a higher proportion of Component C1 promoted the decomposition of FA in the soil.Two-dimensional synchronous scanning map showed that the lower latitude,the simpler structure of humic presented.FA in the black-soil,larger molecular weight and structure of complex material priority cracked form a simple structure relatively,high condensation degree of small molecular compound,and then decomposed completely.Based on the results above,a conclusion could be concluded,that hydrothermal conditions have disadvantage for accumulation of FA substances in black-soil.
引文
[1]KANG Ri-feng,REN Yi,WU Hui-jun(康日峰,任意,吴会军).Scientia Agricultura Sinica(中国农业科学),2016,(11):2113.
    [2]LI Ye,ZHOU Cong-cong,DAI Ling-xing(黎烨,周聪聪,戴零星).Journal of Environmental Sciences(环境科学学报),2017,(3):1098.
    [3]HAO Xiao-di,ZHOU Peng,CAO Ya-li(郝晓地,周鹏,曹亚莉).Chinese Journal of Environmental Engineering(环境工程学报),2017,(1):1.
    [4]Zhao Yue,Wei Yuquan,Zhang Yun,et al.Ecological Indicator,2017,72:473.
    [5]Wei Zimin,Wang Xueqin,Zhao Xinyu,et al.International Biodeterioration&Biodegradation,2016,113:187.
    [6]ZHAO Yue,HE Xiao-song,XI Bei-dou(赵越,何小松,席北斗).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2010,30(6):1555.
    [7]Wu Junqiu,Zhao Yue,Zhao Wei,et al.Bioresource Technology,2017,226:191.
    [8]HU Hui-rong,MA Huan-cheng,LUO Cheng-de(胡慧蓉,马焕成,罗承德).Chinese Journal of Soil Science(土壤通报),2010,(4):1018.
    [9]Korner S.Acta Hydrochim.Hydrobiol.,2014,25(9).
    [10]Qiu Linlin,Cui Hongyang,Wei Zimin.Science of the Total Environment,2016,556:242.
    [11]Wei Z,Zhao X,Zhu C,et al.Chemosphere,2014,95:261.
    [12]Stedmon C A,Markager S.Lomnology and Ocea-nography,2015,50(2):686.
    [13]Santin C,Gonzalez-Perez M,Otero X L,et al.Estuarine,Coastal and Shelf Science,2008,79(3):541.
    [14]Cui Hongyang,Shi Jianhong,Qiu Linlin,et al.Environ.Sci.Pollut Res.,2016,23:10058.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700