三江湿地周边不同利用方式土壤理化性质及水稳性团聚体化学计量特征变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Change of soil physiochemical properties and water-stable aggregates in different uses of Sanjiang Wetland
  • 作者:谷思玉 ; 蔡越桐 ; 张会慧 ; 郭兴军 ; 张泽慧 ; 吴帅
  • 英文作者:GU Siyu;CAI Yuetong;ZHANG Huihui;GUO Xingjun;ZHANG Zehui;WU Shuai;School of Resources and Environmental Sciences, Northeast Agricultural University;
  • 关键词:三江湿地 ; 水田 ; 水稳性团聚体 ; 化学计量特征
  • 英文关键词:Sanjiang Wetland;;paddy field;;water-stable aggregate;;ecological stoichiometry characteristics
  • 中文刊名:DBDN
  • 英文刊名:Journal of Northeast Agricultural University
  • 机构:东北农业大学资源与环境学院;
  • 出版日期:2018-04-25 09:18
  • 出版单位:东北农业大学学报
  • 年:2018
  • 期:v.49;No.278
  • 基金:中国农科院创新工程(CAAS-XTCX2016008);; 十三五粮丰工程项目(2017YFD0300502-2);; 中国农业科学院实验室基金(201701)
  • 语种:中文;
  • 页:DBDN201804005
  • 页数:9
  • CN:04
  • ISSN:23-1391/S
  • 分类号:43-51
摘要
选取黑龙江省三江湿地-洪河保护区3种土地利用方式,分析各类土壤水稳性团聚状态及其团聚体有机碳(SOC)、全氮(TN)、全磷(TP)含量和碳氮磷化学计量特征变化规律。结果表明,湿地土壤不同利用方式水稳定性团聚体组成发生显著变化,水稳性团聚体比例均表现为粉-粘团聚体(<0.053 mm)比例最大,微团聚体(0.053~0.250 mm)次之,大团聚体(>0.25 mm)比例最低。随土壤粒径递减,所有生态系统中土壤SOC、TN、TP含量以及C/N、C/P均降低,表现为大团聚体大于微团聚体,水稳性团聚体N/P变化较小,范围在1.33~2.08。相同土壤粒径下不同利用方式下土壤SOC、TN、TP含量及C/P、N/P最大值均出现在湿地土壤,C/N最大值出现在水田土壤。土壤养分含量最小值出现在旱田土壤。因此,湿地周边土壤对各粒径土壤团聚体全效养分分配及其平衡关系有负向影响,其中旱田和人工林土壤退化最为严重,1~2 mm粒径下碳氮损失量较大,化学计量不平衡。研究结果为湿地保护与合理利用提供科学依据。
        To reveal the impact of land use on soil aggregates, we examined the organic carbon(SOC), total nitrogen(TN), total phosphorus(TP) content, carbon and ecological stoichiometric characteristics of soil aggregates in paddy field, upland field and artificial forest in Sanjiang Wetland-Hong Lake reserve.The results showed that the proportion of powder-stick aggregates(0.053-0.250 mm) was the highest,followed by the micro-aggregates(0.053-0.250 mm), and the large aggregates(> 0.25 mm) was the lowest in all ecosystems. Soil SOC, TN, TP content and C/N, C/P decreased with decreasing size of soil aggregates in all ecosystems, whereas N/P of water stability agglomerates varied less, ranging from 1.33 to 2.08. Soil SOC, TN, TP content, C/P and N/P were the highest in wetland soil under the same soil particle size, while the highest C/N appeared in paddy soil. On the other hand, the lowest soil nutrients was found in upland field. Therefore, the soil around the wetland negatively affected the nutrient allocation and the equilibrium relationship of the soil aggregates in all particle sizes, resulting in serious soil degradation in upland field and artificial field. Furthermore, the loss of carbon and nitrogen in 1-2 mm soil particle was quite strong, which made the chemical measurement unbalanced. The results provide scientific basis for wetland protection and rational utilization.
引文
[1]王绍强,于贵瑞.生态系统碳氮磷元素的生态化学计量学特征[J].生态学报,2008,28(8):3938-3939.
    [2]Reich P B,Tjoelker M G,Machado J L,et al.Universal scaling of respiratory metabolism,size and nitrogen in plants[J].Nature,2006,439(7095):457-461.
    [3]吴统贵,陈步峰,肖以华,等.珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J].植物生态学报,2010,34(1):58-63.
    [4]杨阔,黄建辉,董丹,等.青藏高原草地植物群落冠层叶片氮磷化学计量学分析[J].植物生态学报,2010,34(1):17-22.
    [5]林丽,李以康,张法伟,等.高寒矮嵩草群落退化演替系列氮、磷生态化学计量学特征[J].生态学报,2013,33(17):5245-5251.
    [6]马文济,赵延涛,张晴晴,等.浙江天童常绿阔叶林不同演替阶段地表凋落物的C.N.P化学计量特征[J].植物生态学报,2014,38(8):833-842.
    [7]周鹏,耿燕,马文红,等.温带草地主要优势植物不同器官间功能性状的关联[J].植物生态学报,2010,34(1):7-16.
    [8]徐冰,程雨曦,甘慧洁,等.内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联[J].植物生态学报,2010,34(1):29-38.
    [9]江春玉,刘萍,刘明,等.不同肥力红壤水稻土根际团聚体组成和碳氮分布动态[J].土壤学报,2017,54(1):138-139.
    [10]Paul B K,Vanlauwe B,Ayuke F,et al.Medium-term impact of tillage and residue management on soil aggregate stability,soil carbon and crop productivity[J].Agriculture Ecosystems and Environment,2013,164(1):14-22.
    [11]夏建强,章明奎,徐建民.林地开垦后对不同质地红壤碳氮和磷库的影响[J].土壤通报,2005,36(2):185-189.
    [12]Kayranl B,Scholz M,Mustafa A,et al.Carbon storage and fluxes within freshwater wetlands:A critical review[J].Wetlands,2010,30(1):111-124.
    [13]Lemly A D,Kingsford R T,Thompson J R.Irrigated agriculture and wildlife conservation:Conflict on a global scale[J].Environment Management,2000,25(5):485-512.
    [14]秦明周.红壤丘陵区农业土地利用对土壤肥力的影响及评价[J].山地学报,1999,17(1):71-75.
    [15]Sui X,Zhang R T,Yang L B,et al.Effects of long-term elevated CO2fumigation on microbial communities in a wetland soil[J].Journal of Residuals Science and Technology,2015,12(9):93-96.
    [16]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [17]Six J,Elliot E T,Paustian K,et al.Aggregation and soil organic matter accumulation in cultivated and native grassland soils[J].Soil Science Society of Atmerican Journal,2010,62(5):1367-1377.
    [18]Puget P,Chenu C,Balesden J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].European Journal of Soil Science,2000,51(4):595-605.
    [19]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2007.
    [20]窦森,郝翔翔.黑土团聚体与颗粒中碳、氮含量及腐殖质组成的比较[J].中国农业科学,2013,46(5):970-977.
    [21]Li Z X,Cai C F,Shi Z H,et al.Aggregate stability and its relationship with some chemical properties of red soils in subtropical China[J].Pedosphere,2005,15(1):129-136.
    [22]Pirmoradian N,Sepaskhah A R,Hajabbasi M A.Application of fractal theory to quantify soil aggregate stability as influenced by tillage treatments[J].Biosystems Engineering,2005,90(2):227-234.
    [23]Jastrow J D,Boutton T W,Miller R M.Carbon dynamics of aggregate-associated organic matter estimated by carbon-13 natural abundance[J].Soil Science Society of America Journal,1996,60(3):801-807.
    [24]Elliott E T.Aggregate structure and carbon,nitrogen,and phosphorus in native and cultivated soils[J].Soil Science Society of America Journal,1986,50(3):627-633.
    [25]Puget P,Chenu C,Balesdent J.Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates[J].European Journal of Soil Science,2000,51(4):595-605.
    [26]Yang J,Gao J,Liu B,Zhang W.Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula,southern China[J].Estuarine,Coastal and Shelf Science,2014,136(1):3-10.
    [27]刘金苓,钟玉鸣,谢志儒,等.厌氧氨氧化微生物在有机碳源条件下的代谢特性[J].环境科学学报,2009,29(10):2041-2047.
    [28]宫超,宋长春,谭稳稳,等.三江平原沼泽湿地垦殖对土壤微生物学性质影响研究[J].生态环境学报,2015,24(6):972-977.
    [29]刘景双,杨继松,于君宝,等.三江平原沼泽湿地土壤有机碳的垂直分布特征研究[J].水土保持学报,2003,17(3):6-9.
    [30]闫金龙.铁氧化物-有机质复合物对磷的吸附与形态调控效应研究[D].重庆:西南大学,2016.
    [31]刘毅,李世清,邵明安,等.黄土高原不同土壤结构体有机碳库的分布[J].应用生态学报,2005,17(6):1003-1008.
    [32]Iii F S C,Matson P A,Mooney H A.Principles of Terrestrial Ecosystem Ecology[M].New York:Springer,2011.
    [33]Zhang Z S,Song X L,Lu X G,et al.Ecological stoichiometry of carbon,nitrogen,and phosphorus in estuarine wetland soils:influences of vegetation coverage,plant communities,geomorphology,and seawalls[J].Journal of Soils and Sediments,2013,13(6):1042-1051.
    [34]Cleveland C C,Liptzin D.C:N:P stoichiometry in soil:Is there a"Redfield ratio"for the microbial biomass?[J].Biogeo chemistry,2007,85(3):235-252.
    [35]徐云蕾,卢凌霄,曾馥平,等.喀斯特峰丛洼地不同森林土壤微生物量碳在团聚体中的分布[J].农业现代化研究,2012,33(5):636-640.
    [36]谢摇涛,王明慧,郑阿宝.苏北沿海不同林龄杨树林土壤活性有机碳特征[J].生态学杂志,2012,31(1):51-58.
    [37]刘万德,苏建荣,李帅锋,等.云南普洱季风常绿阔叶林演替系列植物和土壤C、N、P化学计量特征[J].生态学报,2010,30(23):6581-6590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700