160°大角度等通道转角挤压AZ61组织演化与力学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Microstructure Evolution and Mechanical Properties of AZ61 under 160° Equal Channel High Angular Pressing
  • 作者:杨杰 ; 樊建锋 ; 单召辉 ; 杨牧轩
  • 英文作者:YANG Jie;FAN Jianfeng;SHAN Zhaohui;YANG Muxuan;Key Laboratory of Interface Science and Engineering in Advanced Materials Ministry of Education, Taiyuan University of Technology;Shanxi Key Laboratory of Advanced Magnesium Based Materials, Taiyuan University of Technology;School of Materials Science and Engineering, Taiyuan University of Technology;
  • 关键词:160°大角度等通道转角挤压 ; 低温累积变形 ; AZ61合金 ; 细晶 ; 力学性能
  • 英文关键词:160° equal channel high angular pressing;;AZ61;;fine grain;;low temperature cumulative deformation;;mechanical properties
  • 中文刊名:ZZJS
  • 英文刊名:Foundry Technology
  • 机构:新材料界面科学与工程教育部重点实验室太原理工大学;先进镁基材料山西省重点实验室太原理工大学;材料科学与工程学院太原理工大学;
  • 出版日期:2019-07-18
  • 出版单位:铸造技术
  • 年:2019
  • 期:v.40;No.328
  • 基金:国家自然科学基金(U1810122、51504162、U1710118、51601123);; 山西省高等学校创新人才支持计划(2018);; 山西省自然科学基金(201801D221139);; 山西省科技基础条件平台建设项目(201605D121030);; 山西省人才专项(优秀人才科技创新)(201605D211015)资助项目
  • 语种:中文;
  • 页:ZZJS201907031
  • 页数:5
  • CN:07
  • ISSN:61-1134/TG
  • 分类号:103-107
摘要
在100℃及150℃对商用AZ61挤压板材采用160°大角度等通道转角挤压,分析了等通道转角挤压(ECAP)变形组织演化规律。基于储能理论分析了100℃和150℃时ECAP对AZ61合金力学性能的影响。结果表明,在100℃时,ECAP三道次累积变形量为0.6,以孪晶动态再结晶(TDRX)为主;在150℃累积变形量为0.6时,以连续动态再结晶(CDRX)为主。150℃的ECAP挤压8道次,再经100℃的ECAP挤压三道次,获得了1μm的细晶组织,提高了AZ61合金的综合力学性能,其屈服强度达到350 MPa,抗拉强度达到了432 MPa。
        The evolution of deformation microstructure was analyzed by equal channel 160° angle extrusion(ECAP) at100 ℃ and 150 ℃ for commercial AZ61 extrusion plate. Based on the energy storage theory analyzed the at 100 ℃ and150 ℃ when the ECAP effects on mechanical properties of AZ61 alloy. The results show that at 100 ℃, ECAP three times accumulated deformation is 0.6, twin dynamic recrystallization(TDRX) is given priority; At 150 ℃ accumulated deformation of 0.6, the continuous dynamic recrystallization(CDRX) is the main priority. 150 ℃ of ECAP extrusion 8 times, then through 100 ℃ of ECAP extrusion three times, the 1 μm fine grain structure is obtained, improve the comprehensive mechanics performance of the AZ61 alloy, the yield strength and tensile strength are 350 MPa and 432 MPa,respectively.
引文
[1]Nie K B,Deng K K,Xu F J.Development of microstructure in submicron particles reinforced magnesium matrix composite processed by room temperature deformation[J].Materials Chemistry and Physics,2015,149-150:21-26.
    [2]Liu J W,Chen Z H,Chen D.Deformation mechanism and softening effect of extruded AZ31 magnesium alloy sheet at moderate temperatures[J].Transactions of Nonferrous Metals Society of China,2012,22(6):1329-1335.
    [3]Guo L L,Fujita F.Effect of deformation mode,dynamic recrystallization and twinning on rolling texture evolution of AZ31 magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2018,28(6):1094-1102.
    [4]Huang T L,Shuai L F,Wakeel A,et al.Strengthening mechanisms and Hall-Petch stress of ultrafine grained Al-0.3%Cu[J].Acta Materialia,2018,156:369-378.
    [5]陈振华,严红革.镁合金[M].北京:化学工业出版社,2004.
    [6]Fan H,Aubry S,Arsenlis A,et al.Grain size effects on dislocation and twinning mediated plasticity in magnesium[J].Scripta Materialia,2016,112:50-53.
    [7]Azushima A,Kopp R,Korhonen A,et al.Severe plastic deformation(SPD)processes for metals[J].CIRP Annals,2008,57(2):716-735.
    [8]Martynenko N S,Lukyanova E A,Serebryany V N,et al.Increasing strength and ductility of magnesium alloy WE43 by equal-channel angular pressing[J].Materials Science and Engineering:A,2018,712:625-629.
    [9]Lukyanova E A,Martynenko N S,Shakhova I,et al.Strengthening of age-hardenable WE43 magnesium alloy processed by high pressure torsion[J].Materials Letters,2016,170:5-9.
    [10]Hou L,Wang T Z,Wu R Z,et al.Microstructure and mechanical properties of Mg-5Li-1Al sheets prepared by accumulative roll bonding[J].Journal of Materials Science&Technology,2018,34(2):317-323.
    [11]Zhao G,Fan J F,Zhang H,et al.Exceptional mechanical properties of ultra-fine grain AZ31 alloy by the combined processing of E-CAP,rolling and EPT[J].Materials Science and Engineering:A,2018,731:54-60.
    [12]Iwahashi Y.Principle of Equal-Channel Angular Peessing for the Processing of Ultra-Fine Grained Materials[M].City,1996.
    [13]Chen Y J,Wang Q D,Lin J B,et al.Grain refinement of magnesium alloys processed by severe plastic deformation[J].Transactions of Nonferrous Metals Society of China,2014,24(12):3747-3754.
    [14]刘俊伟,陈振华,陈鼎.AZ31镁合金挤压板材的中温变形机理及软化机制[J].中国有色金属学报(英文版),2012,22(6):1329-1335.
    [15]何运斌,潘清林,刘晓艳.镁合金等通道转角挤压过程中的晶粒细化机制[J].中国有色金属学报,2011(8):1785-1793.
    [16]Barnett M R.Twinning and the ductility of magnesium alloys:Part I:“Tension”twins[J].Materials Science and Engineering:A,2007,464(1):1-7.
    [17]Robin P Y F,Cruden A R.Strain and vorticity patterns in ideally ductile transpression zones[J].Journal of Structural Geology,1994,16(4):447-466.
    [18]Godfrey A,Cao W Q,Liu Q,et al.Stored energy,microstructure,and flow stress of deformed metals[J].Metallurgical and Materials Transactions A,2005,36(9):2371-2378.
    [19]Azzeddine H,Tirsatine K,Baudin T,et al.On the stored energy evolution after accumulative roll-bonding of invar alloy[J].Materials Chemistry and Physics,2017,201:408-415.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700