氯盐干湿循环次数对TRC加固RC柱抗震性能影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of chloride dry-wet cycles on seismic behavior of RC columns strengthened with TRC
  • 作者:李耀 ; 尹世平 ; 刘鸣 ; 杨扬
  • 英文作者:LI Yao;YIN Shiping;LIU Ming;YANG Yang;State Key Laboratory for Geomechanics & Deep Underground Engineering,China University of Mining and Technology;Jiangsu Key Laboratory of Environmental Impact and Structural Safety in Engineering,China University of Mining and Technology;
  • 关键词:纤维编织网增强混凝土(TRC) ; 钢筋混凝土柱 ; 氯盐干湿循环次数 ; 低周往复加载试验 ; 抗震性能
  • 英文关键词:textile reinforced concrete(TRC);;reinforced concrete column;;chloride dry-wet cycle;;low-frequency cyclic loading test;;seismic performance
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:中国矿业大学深部岩土力学与地下工程国家重点实验室;中国矿业大学江苏省土木工程环境灾变与结构可靠性重点实验室;
  • 出版日期:2019-02-21 16:20
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51478458)
  • 语种:中文;
  • 页:JZJB201904010
  • 页数:10
  • CN:04
  • ISSN:11-1931/TU
  • 分类号:98-107
摘要
为了研究在侵蚀环境下纤维编织网增强混凝土(textile reinforced concrete,TRC)加固RC柱的抗震性能,设计制作了9根钢筋混凝土方柱,其中,3根为对比柱,其余6根为TRC加固柱。采用时控开关控制的水泵定时抽水的方式对水槽内的全部试件进行氯盐干湿循环试验。氯盐干湿循环完成后,对9根试件进行了低周往复加载试验,分析了不同氯盐干湿循环次数对TRC加固柱抗震性能的影响。结果表明:在氯盐干湿循环下,TRC加固能够限制裂缝的发展,提高试件的开裂荷载、屈服荷载和峰值荷载,增大加固试件屈服前的刚度,延缓屈服后的刚度退化,提高加固试件的变形能力和耗能能力;氯盐干湿循环会降低TRC的力学性能;氯盐干湿循环对加固试件的开裂荷载影响不大,但随着氯盐干湿循环次数的增加,加固试件的屈服荷载和峰值荷载减小,耗能能力降低,位移延性系数先增大后减小再增大,在试件屈服前后,刚度退化速率变化规律与位移延性系数相同,但到了位移加载后期,氯盐干湿循环次数对试件刚度退化无明显影响。因此,随着氯盐干湿循环次数的增加,TRC加固RC柱的整体抗震性能有一定程度降低。
        To investigate the seismic behavior of RC columns strengthened with textile reinforced concrete(TRC) in a chloride corrosive condition,a total of nine reinforced concrete(RC) columns were prepared.Three columns were used as the controls,and the others were strengthened with TRC.All of the columns were then tested under chloride dry-wet cycles with pumping controlled by a time control switch.After that,low-frequency cyclic loading tests were conducted on all columns,and the effect caused by chloride dry-wet cycles on the seismic behavior of columns was discussed.The experimental results show that TRC in corrosive conditions can restrict the development of concrete cracks,and increase the cracking load,yield load and peak load of the strengthened columns;it can also increase the stiffness of strengthened columns before yielding and delay the stiffness degradation after yielding.Therefore,TRC can improve the deformation and energy dissipation capacity of strengthened columns.The mechanical properties of TRC decrease in a chloride corrosive condition.The chloride dry-wet cycles have little influence on the cracking load of strengthened columns based on the test results in the present study.However,with the increase of dry-wet cycles,the yield load,peak load and energy dissipation capacity of strengthened columns are reduced.In addition,the displacement ductility coefficient first increases,then decreases and increases again.The change of stiffness degradation rate is similar to the displacement ductility coefficient until the yielding of columns.At the later stage of loading,the dry-wet cycles have little effect on the stiffness degradation.Therefore,with the increase of the chloride dry-wet cycles,the seismic behavior of RC columns strengthened with TRC degrades to a certain extent.
引文
[1]李宏男,张宇,李钢.考虑氯离子腐蚀作用的近海桥梁结构地震反应分析[J].土木工程学报,2015,48(7):112-122.(LI Hongnan,ZHANG Yu,LI Gang.Nonlinear seismic analysis of offshore bridges considering chloride ions corrosion effect[J]. China Civil Engineering Journal,2015,48(7):112-122.(in Chinese))
    [2]郑山锁,董立国,左河山,等.人工气候环境下锈蚀RC框架柱抗震性能试验研究[J].建筑结构学报,2018,39(4):28-36.(ZHENG Shansuo,DONG Liguo,ZUO Heshan, et al. Experimental investigation on seismic behaviors of corroded RC frame columns in artificial climate[J]. Journal of Building Structures,2018,39(4):28-36.(in Chinese))
    [3]李春秋,李克非.干湿交替下表层混凝土中水分传输:理论、试验和模拟[J].硅酸盐学报,2010,38(7):1151-1159.(LI Chunqiu,LI Kefei. Moisture transport in concrete cover under drying-wetting cycles:theory,experiment and modeling[J]. Journal of the Chinese Ceramic Society, 2010, 38(7):1151-1159.(in Chinese))
    [4]李永强,巴明芳,柳俊哲,等.干湿循环作用下水泥基复合材料抗氯离子侵蚀性能及其微观结构变化[J].复合材料学报,2017,34(12):2856-2865.(LI Yongqiang, BA Mingfang, LIU Junzhe, et al.Resistance to chloride erosion of cement matrix composite materials under dry-wet cycling and their micro-structural changes[J]. Acta Materiae Compositae Sinica,2017,34(12):2856-2865.(in Chinese))
    [5] COLOMBO I G,MAGRIA A,ZANI G,et al. Textile reinforced concrete:experimental investigation on design parameter[J]. Materials and Structures,2013,41(7):211-221.
    [6] HARTIG J, JESSE F, SCHICKTANZ K, et al.Influence of experimental setups on the apparent uniaxial tensile load bearing capacity of textile reinforced concrete specimens[J]. Materials and Structures,2012,45(3):433-446.
    [7]杜玉兵,荀勇,刘小艳.碳纤维织物增强混凝土薄板抗海水侵蚀性能研究[J].混凝土,2008(9):53-57.(DU Yubing,XUN Yong,LIU Xiaoyan. Corrosion resistance of carbon textile reinforced concrete sheets in sea water[J]. Concrete,2008(9):53-57.(in Chinese))
    [8]殷梦缇,尹世平,王波.氯盐环境下纤维编织网增强混凝土拉伸性能[J].复合材料学报,2018,35(2):433-440.(YIN Mengti, YIN Shiping, WANG Bo.Tensile property of textile reinforced concrete under chloride salt environment[J]. Acta Materiae Compositae Sinica,2018,35(2):433-440.(in Chinese))
    [9]尹世平,李耀,李贺东,等.氯盐干湿循环下TRC加固钢筋混凝土柱轴心受压性能[J].中国公路学报,2017,30(6):230-238.(YIN Shiping,LI Yao,LI Hedong, et al. Axial compression performance of reinforced concrete column strengthened with TRC under chloride dry-wet cycles[J]. China Journal of Highway and Transport,2017,30(6):230-238.(in Chinese))
    [10]李耀,尹世平,彭驰.冻融环境下TRC加固RC柱轴压性能的研究[J].应用基础与工程科学学报,2017,25(3):535-545.(LI Yao,YIN Shiping,PENG Chi.Axial capacity of RC columns strengthened with textilereinforced concrete under freeze-thaw cycles[J].Journal of Basic Science and Engineering,2017,25(3):535-545.(in Chinese))
    [11] ORTLEPP R,LORENZ A,CURBACH M. Column strengthening with TRC:influences of the column geometry onto the confinement effect[J]. Advances in Materials Science&Engineering, 2009:493097.https://doi. org/10. 1155/2009/493097.
    [12] BOURNAS D A,TRIANTAFILLOU T C,ZYGOURIS K, et al. Textile-reinforced mortar versus FRP jacketing in seismic retrofitting of RC columns with continuous or lap-spliced deformed bars[J]. Journal of Composites for Construction,2009,13(5):360-371.
    [13] AL-SALLOUM Y A,SIDDIQUI N A,ELSANADEDY H M,et al. Textile-reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints[J]. Journal of Composites for Construction,2011,15(6):920-933.
    [14] YIN Shiping, YANG Yang, YE Tao, et al.Experimental research on seismic behavior of reinforced concrete columns strengthened with TRC under corrosion environment[J]. Journal of Structural Engineering,2017,143(5):04016231.
    [15]建筑抗震试验方法规程:JGJ 101—2015[S].北京:中国建筑工业出版社,2015.(Specification for seismic test of buildings:JGJ 101—2015[S]. Beijing:China Architecture&Building Press, 2015.(in Chinese))
    [16]尹世平,李耀,杨扬,等.纤维编织网增强混凝土加固RC柱抗震性能的影响因素[J].浙江大学学报(工学版),2017,51(5):904-913.(YIN Shiping,LI Yao,YANG Yang,et al. Influencing factors of seismic performance of RC columns strengthened with textile reinforced concrete[J]. Journal of Zhejiang University(Engineering Science),2017,51(5):904-913.(in Chinese))
    [17] PARK R,PAULAY T. Reinforced concrete structures[M]. New York:John Wiley&Sons,1975:515-517.
    [18]邓宗才,曾洪超,张小冬,等.层内混杂FRP加固混凝土柱抗震性能[J].北京工业大学学报,2010,36(8):1069-1076.(DENG Zongcai,ZENG Hongchao,ZHANG Xiaodong, et al. Seismic performance of square reinforced concrete columns strengthened with hybrid FRP[J]. Journal of Beijing University of Technology,2010,36(8):1069-1076.(in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700