双椭流线型海底管线抵御滑坡冲击的减灾效果与降阻机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect and mechanism of disaster reduction of pipelines with double-elliptic streamline contour against impact of submarine landslides
  • 作者:范宁 ; 年廷凯 ; 焦厚滨 ; 郑德凤
  • 英文作者:FAN Ning;NIAN Ting-kai;JIAO Hou-bin;ZHENG De-feng;State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology;State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology;School of Urban and Environmental Science, Liaoning Normal University;
  • 关键词:海底滑坡 ; 双椭流线型管线 ; 拖曳力系数 ; 升力系数 ; 分离区
  • 英文关键词:submarine landslides;;double-elliptic pipelines;;drag force coefficients;;lift force coefficients;;separated region
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:大连理工大学海岸和近海工程国家重点实验室;中国矿业大学深部岩土力学与地下工程国家重点实验室;辽宁师范大学城市与环境学院;
  • 出版日期:2018-07-10 17:01
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.298
  • 基金:国家重点研发计划项目(No.2016YFE0200100,No.2018YFC0309203);; 国家自然科学基金项目(No.51879036,No.51579032);; 自然资源部海洋油气资源与环境地质重点实验室基金项目(No.MRE201304)~~
  • 语种:中文;
  • 页:YTLX201901044
  • 页数:8
  • CN:01
  • ISSN:42-1199/O3
  • 分类号:420-427
摘要
近年来,随着海洋能源开发步伐的加快,海底管线铺设的数量不断增加,在服役期内这些管线是否稳定直接影响着海洋油气开采、作业人员生命财产及海洋生态环境的安全。针对海底管线易遭受滑坡破坏的现状,提出一种具有双椭流线型截面的海底管线,基于计算流体动力学(CFD)方法,分析了新型管线在滑坡冲击作用下的减灾效果与降阻机制。研究表明,对于平铺和悬浮式铺设形式,双椭流线型管线可以延缓边界层的分离,降低卡门涡街对管线的振动影响,有效地降低滑移体冲击管线产生的拖曳力和升力,最大可使拖曳力系数降低71.01%,升力系数降低32.14%;并提出双椭流线型管线拖曳力系数和升力系数的计算公式,为海底管线的减灾工程提供了新的思路。
        With the rapid development of marine energy extraction, the demand for submarine pipelines has been increasing in recent years. The stability of pipelines during their service period directly affects the safety of the oil and gas exploitation, the workers' life and the marine ecological environment. In view of the fact that submarine pipelines are vulnerable to the damage from landslides, a novel type of submarine pipeline with a double-elliptic contour is developed. Then, the effect and mechanism of disaster reduction of the pipeline under the impact of landslides are analyzed based on the computational fluid dynamics(CFD) method. The results show that the developed pipeline, no matter in a suspended or laid-on-seafloor status, can delay the separation of velocity boundary layer near the pipeline surface to reduce the influence of Karman Vortex Street. Thus, the drag force and lift force of pipelines imposed by submarine landslides are effectively reduced,with a maximum lessening percentage of 71.01% for drag force coefficients and 32.14% for lift force coefficients. Moreover, the equations for estimating the drag force and lift force coefficients of double-elliptic contour pipeline are recommended, which provides a new reference for the disaster fortification and mitigation engineering on submarine pipelines.
引文
[1]刘润,王秀妍,刘月辉,等.点支撑缺陷下海底埋管热屈曲分析[J].岩土力学,2011,32(增刊2):64-69.LIU Run,WANG Xiu-yan,LIU Yue-hui,et al.Thermal buckling analysis of submarine buried pipelines with isolated prop initial imperfection[J].Rock and Soil Mechanics,2011,32(Supp.2):64-69.
    [2]王海涛,池强,李鹤林,等.海底油气输送管道材料开发和应用现状[J].焊管,2014,37(8):25-29.WANG Hai-tao,CHI Qiang,LI He-lin,et al.Development and application status of submarine pipeline materials for oil and gas transportation[J].Welded Pipe and Tube,2014,37(8):25-29.
    [3]HAMPTON M A,LEE H J,LOCAT J.Submarine landslides[J].Reviews of Geophysics,1996,34(1):33-59.
    [4]LOCAT J,LEE H J.Submarine landslides:advances and challenges[J].Canadian Geotechnical Journal,2002,39(1):193-212.
    [5]HANCE J J.Development of a database and assessment of seafloor slope stability based on published literature[D].Austin:University of Texas at Austin,2003.
    [6]王立忠,缪成章.慢速滑动泥流对海底管道的作用力研究[J].岩土工程学报,2008,30(7):982-987.WANG Li-zhong,MIAO Cheng-zhang.Pressure on submarine pipelines under slowly sliding mud flows[J].Chinese Journal of Geotechnical Engineering,2008,30(7):982-987.
    [7]BOWMAN E T,LAUE J,IMRE B,et al.Debris flows in a geotechnical centrifuge[C]//Proceedings of the 6th International Conference on Physical Modelling in Geotechnics.Hong Kong:Taylor&Francis Group,2006:4-6.
    [8]IMRAN J,HARFF P,PARKER G.A numerical model of submarine debris flow with graphical user interface[J].Computers&Geosciences,2001,27(6):717-729.
    [9]GAUER P,KVALSTAD T J,FORSBERG C F,et al.The last phase of the Storegga slide:simulation of retrogressive slide dynamics and comparison with slide-scar morphology[J].Marine&Petroleum Geology,2005,22(1-2):171-178.
    [10]ZAKERI A,H?EG K,NADIM F.Submarine debris flow impact on pipelines-part II:numerical analysis[J].Coastal Engineering,2009,56(1):1-10.
    [11]田建龙.海底滑坡过程数值模拟及其对管线的作用[D].大连:大连理工大学,2014.TIAN Jian-long.Numerical simulation of submarine landslides process and their impact on pipeline[D].Dalian:Dalian University of Technology,2014.
    [12]李宏伟,王立忠,国振,等.海底泥流冲击悬跨管道拖曳力系数分析[J].海洋工程,2015(6):10-19.LI Hong-wei,WANG Li-zhong,GUO Zhen,et al.Drag force of submarine landslides mudflow impacting on a suspended pipeline[J].The Ocean Engineering,2015(6):10-19.
    [13]RANDOLPH M F,WHITE D J.Interaction forces between pipelines and submarine slides-a geotechnical viewpoint[J].Ocean Engineering,2012,48:32-37.
    [14]SAHDI F,GAUDIN C,WHITE D J,et al.Centrifuge modelling of active slide-pipeline loading in soft clay[J].Géotechnique,2014,64(1):16-27.
    [15]PEREZ-GRUSZKIEWICZ S E.Reducing underwaterslide impact forces on pipelines by streamlining[J].Journal of Waterway Port Coastal&Ocean Engineering,2012,138(2):142-148.
    [16]肖华攀,方子帆,朱陈,等.水下流线型体的结构阻力特性及其应用研究[J].三峡大学学报(自然科学版),2013,35(6):92-96.XIAO Hua-pan,FANG Zi-fan,ZHU Chen,et al.Structural drag characteristic and application research of underwater streamlined body[J].Journal of China Three Gorges University(Natural Sciences),2013,35(6):92-96.
    [17]《海洋石油工程设计指南》编委会.海洋石油工程海底管道设计[D].北京:石油工业出版社,2007.The Offshore Oil Engineering Design Guide Board.Offshore oil engineering underwater pipeline design[D].Beijing:Petroleum Industrial Publishing House,2007.
    [18]刘润,刘文彬,洪兆徽,等.海底管线整体屈曲过程中土体水平向阻力模型研究[J].岩土力学,2015,36(9):2433-2441.LIU Run,LIU Wen-bin,HONG Zhao-hui,et al.A soil resistance model for subsea pipeline global lateral buckling analysis[J].Rock and Soil Mechanics,2015,36(9):2433-2441.
    [19]BOUKPETI N,WHITE D J,RANDOLPH M F,et al.Strength of fine-grained soils at the solid-fluid transition[J].Géotechnique,2012,62(3):213-226.
    [20]ZAKERI A,H?EG K,NADIM F.Submarine debris flow impact on pipelines-part I:experimental investigation[J].Coastal Engineering,2008,55(12):1209-1218.
    [21]郭小阳,马思平.非牛顿液体流变模式的研究[J].天然气工业,1997,17(4):43-49.GUO Xiao-yang,MA Si-ping.Research of non-newtonian fluid rheology model[J].Natural Gas Industry,1997,17(4):43-49.
    [22]COUSSOT P,LAIGLE D,ARATTANO M,et al.Direct determination of rheological characteristics of debris flow[J].Journal of Hydraulic Engineering,2000,126(2):865-868.
    [23]陶文铨.数值传热学(第2版)[M].西安:西安交通大学出版社,2001.TAO Wen-quan.Numerical heat transfer(version 2)[M].Xi’an:Xi’an Jiaotong University Press,2001.
    [24]赵斌娟,袁寿其,刘厚林,等.基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J].农业工程学报,2008,24(1):7-12.ZHAO Bin-juan,YUAN Shou-qi,LIU Hou-lin,et al.Simulation of solid-liquid two-phase turbulent flow in double-channel pump based on Mixture model[J].Transactions of the CSAE,2008,24(1):7-12.
    [25]LIU J,TIAN J,YI P.Impact forces of submarine landslides on offshore pipelines[J].Ocean Engineering,2015,95:116-127.
    [26]SI G.Experimental study of the rheology of fine-grained slurries and some numerical simulations of downslope slurry movements[D].Oslo:University of Oslo,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700