氨基离子液体/CO_2高温高效吸收式制冷循环研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Amino Ionic Liquid/CO_2 High-temperature and High-efficiency Absorption Refrigeration Cycle
  • 作者:赵天宇 ; 郭开 ; 皇甫立霞 ; 陈莹
  • 英文作者:Zhao Tianyu;Guo Kaihua;Huangfu Lixia;Chen Ying;School of Engineering, Sun Yat-Sen University;
  • 关键词:氨基离子液体 ; 水溶液 ; CO_2 ; 吸收式制冷
  • 英文关键词:amino ionic liquid;;aqueous solution;;CO_2;;absorption refrigeration
  • 中文刊名:ZLXB
  • 英文刊名:Journal of Refrigeration
  • 机构:中山大学工学院;
  • 出版日期:2019-02-16
  • 出版单位:制冷学报
  • 年:2019
  • 期:v.40;No.185
  • 基金:国家自然科学基金(51076169)资助项目~~
  • 语种:中文;
  • 页:ZLXB201901017
  • 页数:7
  • CN:01
  • ISSN:11-2182/TB
  • 分类号:117-123
摘要
本文选用高热稳定性的氨基功能型离子液体3-丙胺基-三丁基鏻甘氨酸盐([aP_(4443)][Gly])水溶液为吸收剂与CO_2组成新型吸收式制冷循环工质对。根据已测定的CO_2在[aP_(4443)][Gly]水溶液中的溶解度,拟合并外延得到300~510 K、1~10 MPa条件下[aP_(4443)][Gly]水溶液中CO_2的溶解度。测定了285~365 K温度范围内不同浓度[aP_(4443)][Gly]水溶液的质量定压热容,计算得到[aP_(4443)][Gly]水溶液的焓。用两种方法分析了[aP_(4443)][Gly]水溶液对CO_2的吸收焓,得到[aP_(4443)][Gly]水溶液/CO_2体系焓。根据以上数据分析计算[aP_(4443)][Gly]水溶液/CO_2单效吸收式制冷性能系数。结果表明:[aP_(4443)][Gly]水溶液/CO_2工质对可以在较高温度环境下工作,在发生温度为393.15 K,蒸发温度为278.15 K,冷却温度为303.15 K时,制冷性能系数可达0.87;在更高的发生温度下,制冷性能系数可达0.91,说明[aP_(4443)][Gly]水溶液/CO_2工质对具有成为新型吸收式制冷工质对的巨大潜力。
        In this work, a high thermal stability amino-functional ionic liquid 3-aminopropyl-tributylphosphonium glycine([aP_(4443)][Gly]) aqueous solution and CO_2 were used as absorbent to form a new type of absorption working pair. The solubility of CO_2 in [aP_(4443)][Gly] under the conditions of 300-510 K and 1-10 MPa was fitted with the solubility data of CO_2 in [aP_(4443)][Gly]. The specific heat capacity of [aP_(4443)][Gly] aqueous solution was tested under different temperatures which ranged from 285 to 365 K, and the enthalpy of the [aP_(4443)][Gly] aqueous solution was calculated. The absorption enthalpy of CO_2 in the [aP_(4443)][Gly] aqueous solution was calculated using two methods, and the enthalpy of this system was obtained. Then the abovementioned data were used to calculate the [aP_(4443)][Gly]-H_2O/CO_2 absorption refrigeration cycle coeffcient of performance. The results show that the [aP_(4443)][Gly]-H_2O/CO_2 working fluid can work at very high temperatures. When the generator temperature was 393.15 K, evaporation temperature was 278.15 K and the condenser temperature is 303.15 K, the refrigeration cycle coeffcient of performance could reach 0.87. At higher generator temperatures, the refrigeration cycle coeffcient of performance could reach up to 0.91, indicating that the working fluid can possibly become a new type of absorption refrigerant.
引文
[1] AUSTIN B T, SUMATHY K. Transcritical carbon dioxide heat pump systems: a review[J]. Renewable & Sustainable Energy Reviews, 2011, 15(8):4013-4029.
    [2] 陈曙辉, 陈光明,郑飞. 吸收式制冷工质的发展[J]. 制冷学报, 1998,9(2):45-52. (CHEN Shuhui, CHEN Guangming, ZHENG Fei. Development of working pair in absorption refrigeration[J]. Journal of Refrigeration, 1998,9(2):45-52.)
    [3] SHIFLETT M B, YOKOZEKI A. Absorption cycle using ionic liquids and water as working fluid: US 2007/0144186 A1[P]. 2007-06-28.
    [4] ZHANG Zhaofu, WU Weize, WANG Bo, et al. High-pressure phase behavior of CO/acetone/ionic liquid system[J]. Journal of Supercritical Fluids, 2007, 40(1):1-6.
    [5] NONTHANASIN T, HENNI A, SAIWAN C. Densities and low pressure solubilities of carbon dioxide in five promising ionic liquids[J]. RSC Advances, 2014, 4(15):7566-7578.
    [6] MAITI A. Theoretical screening of ionic liquid solvents for carbon capture[J]. ChemSusChem, 2009, 2(7):628-631.
    [7] YUAN Xiaoliang, ZHANG Suojiang, LIU Jun, et al. Solubilities of CO2 in hydroxyl ammonium ionic liquids at elevated pressures[J]. Fluid Phase Equilibria, 2007, 257(2):195-200.
    [8] ARNó S D, LUCAS S, SHARIATI A, et al. Erratum to: effect of lithium tetrafluoroborate on the solubility of carbon dioxide in the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate[J]. Journal of Solution Chemistry, 2013, 42(3):690.
    [9] 范薇, 孙晓霞, 苏岩. 基于离子液体固定二氧化碳的研究进展[J]. 化学研究, 2009, 20(3):101-107. (FAN Wei,SUN Xiaoxia,SU Yan. Research progress in fixation of CO2 based on ionic liquids[J]. Chemical Reaearch, 2009, 20(3): 101-107.)
    [10] ARCE P F, ROBLES P A, GRABER T A, et al. Modeling of high-pressure vapor-iquid equilibrium in ionic liquids + gas systems using the PRSV equation of state[J]. Fluid Phase Equilibria, 2010, 295(1):9-16.
    [11] CURRáS M R, GOMES M F C, HUSSON P, et al. Calorimetric and volumetric study on binary mixtures 2,2,2-trifluoroethanol + (1-butyl-3-methylimidazolium tetrafluoroborate or 1-ethyl-3-methylimidazolium tetrafluoroborate)[J]. Journal of Chemical & Engineering Data, 2010, 55(12):5504-5512.
    [12] ZHANG Xiaodong, HU Dapeng. Performance simulation of the absorption chiller using water and ionic liquid 1-ethyl-3-methylimidazolium dimethylphosphate as the working pair[J]. Applied Thermal Engineering, 2011, 31(16):3316-3321.
    [13] YOKOZEKI A, SHIFLETT M B. Vapor-liquid equilibria of ammonia + ionic liquid mixtures[J]. Applied Energy, 2007, 84(12):1258-1273.
    [14] MIRARAB M, SHARIFI M, GHAYYEM M A, et al. Prediction of solubility of CO2 in ethanol-[EMIM][Tf2N] ionic liquid mixtures using artificial neural networks based on genetic algorithm[J]. Fluid Phase Equilibria, 2014, 371:6-14.
    [15] 武东, 吴俊, 王振, 等. 新型离子液体-CO2吸收制冷工质对选择及吸收特性[J]. 制冷学报, 2016, 37(3):22-28. (WU Weidong,WU Jun,WANG Zhen, et al. Selection of ionic liquids and absorption properties of ionic liquids-CO2 working pairs[J]. Journal of Refrigeration, 2016, 37(3): 22-28.)
    [16] ANTHONY J L, ANDERSON J L, MAGINN E J, et al. Anion effects on gas solubility in ionic liquids[J]. Journal of Physical Chemistry B, 2005, 109(13):6366-6374.
    [17] CAI Weihua, SEN M, PAOLUCCI S. Dynamic modeling of an absorption refrigeration system using ionic liquids[C]//Proceedings of IMECE2007. Seattle: ASME, 2007:227-236.
    [18] MARTíN á, BERMEJO M D. Thermodynamic analysis of absorption refrigeration cycles using ionic liquid + supercritical CO2 pairs[J]. Journal of Supercritical Fluids, 2010, 55(2):852-859.
    [19] 何丽娟,朱超群,杨彬,等. 新型双温驱动吸收制冷循环性能[J]. 制冷学报, 2016, 37(2):59-64. (HE Lijuan, ZHU Chaoqun, YANG Bin, et al. Experimental study on performances of a new absorption refrigeration system driven by double low-grade energy[J]. Journal of Refrigeration, 2016, 37(2): 59-64.)
    [20] BATES E D, MAYTON R D, NTAI I, et al. CO2 capture by a task-specific ionic liquid[J]. Journal of the American Chemical Society, 2002, 124(6):926-927.
    [21] CHEN Ying, GUO Kaihua, HUANGPU Lixia. Experiments and modeling of absorption of CO2 by amino-cation and amino-anion dual functionalized ionic liquid with the addition of aqueous medium[J]. Journal of Chemical & Engineering Data, 2017, 62(11):3732-3743.
    [22] 周岚,郭开华,陈莹,等. 双氨基离子液体-水二组分物系汽液平衡的测定[J]. 石油化工, 2017, 46(2):202-208. (ZHOU Lan, GUO Kaihua, CHEN Ying, et al.Determination of vapor-liquid equilibrium of dual-amino ionic liquid aqueous solution[J]. Petrochemical Technology, 2017, 46(2):202-208.)
    [23] 郑宋平. 氨水吸收式制冷循环的理论与实验研究 [D]. 北京: 北京化工大学, 2004. (ZHENG Songping. Theoery and experiment research of an ammonia-water absorption refrigeration cycle[D]. Beijing: Beijing University of Chemical Technology, 2004.)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700