电站锅炉低氮燃烧与高温受热面换热的联合模拟及分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Coupled Simulation and Analysis of Low NO_x Combustion and High-temperature Surfaces Heat Transfer for a Utility Boiler
  • 作者:喻聪 ; 司风琪 ; 熊尾 ; 周建新 ; 江晓明
  • 英文作者:YU Cong;SI Fengqi;XIONG Wei;ZHOU Jianxin;JIANG Xiaoming;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education (Southeast University);Datang Nanjing Environmental Protection Technology Co.Ltd.;
  • 关键词:切圆燃烧锅炉 ; 超临界 ; 耦合数值模拟 ; 燃烧性能 ; NO_x排放 ; 蒸汽管壁超温
  • 英文关键词:tangentially fired boiler;;supercritical;;coupled simulation;;combustion performance;;NO_x emission;;steam tube overheating
  • 中文刊名:ZGDC
  • 英文刊名:Proceedings of the CSEE
  • 机构:能源热转换及过程测控教育部重点实验室(东南大学);大唐南京环保科技有限责任公司;
  • 出版日期:2019-06-18 08:40
  • 出版单位:中国电机工程学报
  • 年:2019
  • 期:v.39;No.624
  • 基金:国家自然科学基金项目(51306032)~~
  • 语种:中文;
  • 页:ZGDC201913013
  • 页数:10
  • CN:13
  • ISSN:11-2107/TM
  • 分类号:140-149
摘要
基于CFD和Matlab平台,建立660MW超临界切圆锅炉炉内燃烧与高温受热面换热的耦合模型。针对不同管屏形状特点,提出Fluent结构和非结构化网格与Matlab离散微元的映射方法,实现了高温受热面壁温在风烟侧和汽水侧的迭代计算。模拟预测值和变工况趋势与锅炉热态试验吻合较好。结果表明,锅炉满负荷运行时,上调SOFA风摆角能降低化学未完全燃烧损失且抑制NO_x的生成,但燃尽风在炉内的消旋长度也减小,导致水平烟道烟温偏差和受热面局部高温区面积增加,使高温再热器炉内最高壁温难以始终维持在材料许用温度以内,对机组长期运行的安全性会产生影响。建议锅炉在以高效、低NO_x生成为燃烧优化目标的同时,兼顾运行调整对高温受热面壁温的影响。
        Based on the commercial software CFD and Matlab, a coupled model was established for a 660 MW supercritical tangentially-fired boiler by combining the combustion process in the furnace with the heat transfer in the high-temperature heating surfaces. Considering the shape characteristics of different heating surfaces, a mapping method was proposed to connect the structured and unstructured meshes in Fluent with the discrete nodes in Matlab. Therefore,the tube wall temperature of the high-temperature heat exchangers can be calculated by coupling the fire and water-steam sides. The simulated results and the trend of off-design conditions was validated with the boiler test data. It indicates that, under the full load cases, a greater SOFA vertical tilt angle can reduce the chemical incomplete combustion loss as well as NO_x emission. However, the length in furnace for eliminating residual swirling flow decreases, which enhances the gas temperature deviation and the high-temperature area of the heaters in the horizontal pass. Thus, the maximum wall temperature of the final re-heater cannot always be controlled within the allowable temperature, which threatens to the safety of unit long-term operation. Overall, it suggests that the effect of boiler adjustments on the tube wall temperature should also be considered while conducting combustion optimization.
引文
[1]梁志宏.基于我国新大气污染排放标准下的燃煤锅炉高效低NOx协调优化系统研究及工程应用[J].中国电机工程学报,2014,34(S1):122-129.Liang Zhihong.Study and engineering application of high efficiency and low NOx coordinated optimization control system for coal-fired boilers based on new air pollutant emission standard[J].Proceedings of the CSEE,2014,34(S1):122-129(in Chinese).
    [2]张晓宇.600MW低NOx切圆炉膛燃烧优化分析[J].中国电机工程学报,2016,36(S1):140-146.Zhang Xiaoyu.Analysis of combustion optimization on600MW low nitrogen tangentially coal-fired boiler[J].Proceedings of the CSEE,2016,36(S1):140-146(in Chinese).
    [3]Zha Qiongliang,Li Debo,Wang Chang’an,et al.Numerical evaluation of heat transfer and NOx emissions under deep-air-staging conditions within a 600MWe tangentially fired pulverized-coal boiler[J].Applied Thermal Engineering,2017,116:170-181.
    [4]Tan Peng,Tian Dengfeng,Fang Qingyan,et al.Effects of burner tilt angle on the combustion and NOx emission characteristics of a 700MWe deep-air-staged tangentially pulverized-coal-fired boiler[J].Fuel,2017,196:314-324.
    [5]Liu Y C,Fan W D,Wu M Z.Experimental and numerical studies on the gas velocity deviation in a 600MWe tangentially fired boiler[J].Applied Thermal Engineering,2017,110:553-563.
    [6]Chen Shinan,He Boshu,He Di,et al.Numerical investigations on different tangential arrangements of burners for a 600MW utility boiler[J].Energy,2017,122:287-300.
    [7]Park H Y,Baek S H,Kim H H,et al.Reduction of main steam temperature deviation in a tangentially coal-fired,two pass boiler[J].Fuel,2016,166:509-516.
    [8]Akkinepally B,Shim J,Yoo K.Numerical and experimental study on biased tube temperature problem in tangential firing boiler[J].Applied Thermal Engineering,2017,126:92-99.
    [9]Tang Guangwu,Wu Bin,Johnson K,et al.Numerical study of a tangentially fired boiler for reducing steam tube overheating[J].Applied Thermal Engineering,2016,102:261-271.
    [10]张晋,袁益超,刘聿拯,等.分隔屏布置对四角布置切圆燃烧锅炉水平烟道空气动力场的影响[J].中国电机工程学报,2010,30(17):6-11.Zhang Jin,Yuan Yichao,Liu Yuzheng,et al.Influence of the panel superheater layout on air dynamic field in tangentially fired boiler horizontal gas pass[J].Proceedings of the CSEE,2010,30(17):6-11(in Chinese).
    [11]Tian Dengfeng,Zhong Lijin,Tan Peng,et al.Influence of vertical burner tilt angle on the gas temperature deviation in a 700MW low NOx tangentially fired pulverised-coal boiler[J].Fuel Processing Technology,2015,138:616-628.
    [12]Park H Y,Baek S H,Kim Y J,et al.Numerical and experimental investigations on the gas temperature deviation in a large scale,advanced low NOx,tangentially fired pulverized coal boiler[J].Fuel,2013,104:641-646.
    [13]Park H Y,Faulkner M,Turrell M D,et al.Coupled fluid dynamics and whole plant simulation of coal combustion in a tangentially-fired boiler[J].Fuel,2010,89(8):2001-2010.
    [14]Schuhbauer C,Angerer M,Spliethoff H,et al.Coupled simulation of a tangentially hard coal fired 700℃boiler[J].Fuel,2014,122:149-163.
    [15]Yang Yu,Bai Wengang,Wang Yueming,et al.Coupled simulation of the combustion and fluid heating of a300MW supercritical CO2 boiler[J].Applied Thermal Engineering,2017,113:259-267.
    [16]许霖杰,程乐鸣,季杰强,等.超/超临界循环流化床锅炉整体数值模型[J].中国电机工程学报,2018,38(2):348-355.Xu Linjie,Cheng Leming,Ji Jieqiang,et al.Integrated numerical model for ultra/supercritical CFB boilers[J].Proceedings of the CSEE,2018,38(2):348-355(in Chinese).
    [17]Wang Fengjun,Su Hongliang,Chen Tang,et al.Coupled modeling of combustion and hydrodynamics for a supercritical CO2 boiler[J].Applied Thermal Engineering,2018,143:711-718.
    [18]Zima W,Nowak-Oc?ońM,Oc?ońP.Simulation of fluid heating in combustion chamber waterwalls of boilers for supercritical steam parameters[J].Energy,2015,92:117-127.
    [19]林宗虎,徐通模.实用锅炉手册[J].北京:化学工业出版社,1999,1:999.Lin Zonghu,Xu Tongmo.Utility boiler manual[J].Beijing:Chemical Industry Press,1999,1:999(in Chinese).
    [20]Qi Jing,Zhou Keyi,Huang Junlin,et al.Numerical simulation of the heat transfer of superheater tubes in power plants considering oxide scale[J].International Journal of Heat and Mass Transfer,2018,122:929-938.
    [21]美国机械工程师协会.ASME PTC 4-1998锅炉性能试验规程[S].阎维平,译.北京:中国电力出版社,2004.American Society of Mechanical Engineers.ASME PTC4-1998 Fired steam generators performance test code[S].Yan Weiping,Trans..Beijing:China Electric Power Press,2004(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700