TBCC旋流燃烧涡扇模态下的流动特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Flow Characteristics of TBCC Swirled Combustion in Turbofan Mode
  • 作者:翟文辉 ; 范育新 ; 陶华 ; 陈玉乾
  • 英文作者:ZHAI Wen-hui;FAN Yu-xin;TAO Hua;CHEN Yu-qian;Jiangsu Province Key Laboratory of Aerospace Power System,College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:涡轮基组合循环发动机 ; 涡扇模态 ; 旋流 ; 超紧凑 ; 离心力燃烧
  • 英文关键词:Turbine based combined cycle engine;;Turbofan mode;;Swirl;;Super compact;;Centrifugal combustion
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:南京航空航天大学能源与动力学院江苏省航空动力系统重点实验室;
  • 出版日期:2019-01-15
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.259
  • 基金:南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20170206)
  • 语种:中文;
  • 页:TJJS201901016
  • 页数:10
  • CN:01
  • ISSN:11-1813/V
  • 分类号:136-145
摘要
为减小整流段和钝体造成的损失,针对涡轮基组合循环发动机(TBCC)燃烧室,基于离心力燃烧加速火焰传播的机理,通过数值模拟方法研究了不同旋流进口位置、旋流角度及其组合方式下的流场特征,以及不同燃油喷射粒径在离心力场下的油雾场分布特性。研究发现:相比于单一位置的旋流进口及旋流角度,利用不同旋流位置及不同旋流角度的组合方式,总压损失虽然有所增大,但切向速度衰减较快;对于不同的燃油喷射粒径,70μm粒径的油珠相比于50μm的受到的离心力较大,所需掺混距离缩短,其油雾分布特性更符合燃烧室温度分布要求。
        In order to reduce the losses caused by the rectifier section and the bluff body,through the use of the centrifugal force accelerating flame propagation principle,a combustion chamber of a turbine based combined cycle engine(TBCC)is designed.The flow field characteristics of different swirl inlet positions,swirling angles and the combination of both are studied with numerical simulation methods and the fuel particle size influence on the oil field distribution under centrifugal force field is studied.The results show that,compared with the swirling inlet and swirling angle at a single position,the total pressure loss increases with the combination of different swirling positions and angles,while the tangential velocity attenuates rapidly.Results of different fuel particles size simulation show that,comparing with 50μm diameter fuel droplets,the mixing distance of 70μm ones is shorter due to the larger centrifugal force they born,and the fuel spray distribution is more in line with the combustion chamber temperature distribution requirements.
引文
[1]王占学,乔渭阳.预冷却涡轮基组合循环发动机发展现状及应用前景[J].燃气涡轮试验与研究,2005,18(1):53-56.
    [2]Hueter U,Maclinton C R.NASA's Advanced Space Transportation Hypersonic Program[R].AIAA 2002-5175.
    [3]Tang M,Mamplata C.Two Steps of a Giant Leap-an Approach for Air Breathing Hypersonic Flight[R].AIAA 2011-2237.
    [4]McNelis N,Bartolotta P.Revolutionary Turbine Accelerate or(RTA)Demonstrator[R].AIAA 2005-3250.
    [5]Lee J,Winslow R,Buehrle B J.The GE-NASA RTAHype Burner Design and Development[R].NASA-TM2005-213803.
    [6]Davoudzadeh F,Buehrle R,Liu N S,et al.Numerical Simulation of the RTA Combustion Rig[R].NASA-TM2005-213899.
    [7]Jean-Pierre Minard,Michel Hallais,Francois Falempin.Low Cost Ramjet Technology for Tactical Missile Application[R].AIAA 2002-3765.
    [8]Zelina Joseph,Sturgess G J,Shouse Dale T.The Behavior of an Ultra-Compact Combustor(UCC)Based on Centrifugally-Enhanced Turbulent Burning Rates[R].AIAA 2004-3541.
    [9]Wesly S Anderson.Effects of Main Swirl Direction on High-g Combustion[R].AIAA 2008-4954.
    [10]Adam K Parks,Marc D Polanka.Quantifying Exhaust Emissions and Temperature of the Ultra-Compact Combustor[R].AIAA 2012-0935.
    [11]李明,唐豪,张超,等.一种新型涡轮叶间燃烧室的数值模拟[J].航空动力学报,2012,27(1):55-62.
    [12]黄先键,谈浩元,崔玮.旋流燃烧效率的试验研究[J].航空动力学报,1989,4(2):135-136.
    [13]George D Lewis.Centrifugal-Force Effects on Combustion[J].Symposium on Combustion,1973,14(1):413-419.
    [14]George D Lewis.Swirling Flow Combustion-Fundamentals and Application[C].Las Vegas:9th Propulsion Conference,1973.
    [15]Lewis G D,Shadowen J H,Thayer E B.Swirling Flow Combustion[J].Journal of Energy,1977,1(4):201-205.
    [16]Egan W J,Shadowen J H.Design and Verification of a Turbofan Swirl Augmentor[J].Journal of Aircraft,1978,16(9):599-604.
    [17]Hanloser K J,Whitney Aircraft W P,Beach F,et al.Test Verification of a Turbofan Partial Swirl Afterburner[R].AIAA 79-1199.
    [18]Xiaojun Cheng,Yuxin Fan,Di Cai.Effect of Fuel Injection with Mixer in TBCC Hyperburner[R].AIAA2014-3747.
    [19]Xiaojun Cheng,Yuxin Fan.Experimental Study of Lean Ignition and Lean Blowout Performance Improvement Using an Evaporation Flameholder[J].International Journal of Heat&Mass Transfer,2016,103:319-326.
    [20]张健,魏星.旋流燃烧室内多组分气体湍流混合的数值模拟[J].推进技术,2009,30(5):528-532(ZHANG Jian,WEI Xing.Numerical Simulation of Turbulent Mixing of Multi Species Gas in a Swirl Combustor[J].Journal of Propulsion Technology,2009,30(5)528-532.)
    [21]Sankaran V,Menon S.LES of Spray Combustion in Swirling Flows[J].Journal of Turbulence,2002,3(11):1-23.
    [22]Itoh Y,Taniguchi N,Kobayashi T,et al.Large Eddy Simulation of Spray Combustion in Swirling Flows[C].USA:ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference,2003.
    [23]郭新华,张弛,林宇震.离心力场下扩散射流火焰的特性[J].航空动力学报,2010,25(9):1978-1983.
    [24]邱新宇,宫本泉,刘少波.整体式液体冲压发动机旋流燃烧室试验研究[J].推进技术,1992,13(2):13-17.(QIU Xin-yu,GONG Ben-quan,LIU Shao-bo.An Experimental Investigation of the Swirling Combustor for Integral Liquid Fuel Ramjet[J].Journal of Propulsion Technology,1992,13(2):13-17.)
    [25]Kind R J.Mean Flow and Turbulence Measurements of Annular Swirling Flows[J].Journal of Fluids Engineering,1988,110(3):257-263.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700