三组分气体超声速凝结过程数值模拟与实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical Simulation and Experimental Study on Supersonic Condensation Process of Ternary Mixture
  • 作者:曹学文 ; 边江 ; 靳学堂 ; 尹鹏博 ; 杨文
  • 英文作者:CAO Xuewen;BIAN Jiang;JIN Xuetang;YIN Pengbo;YANG Wen;College of Pipeline and Civil Engineering,China University of Petroleum;Hefei Gas Group Company Limited;
  • 关键词:三组分气体 ; 超声速 ; 凝结 ; 数值模拟 ; 实验
  • 英文关键词:ternary mixture;;supersonic;;condensation;;numerical simulation;;experiment
  • 中文刊名:SXJG
  • 英文刊名:Acta Petrolei Sinica(Petroleum Processing Section)
  • 机构:中国石油大学(华东)储运与建筑工程学院;合肥燃气集团有限公司;
  • 出版日期:2019-01-25
  • 出版单位:石油学报(石油加工)
  • 年:2019
  • 期:v.35
  • 基金:国家重点研发计划专项项目(2016YFC0802302,2016YFC0802304);; 国家自然科学基金项目(51274232,51406240)资助
  • 语种:中文;
  • 页:SXJG201901015
  • 页数:12
  • CN:01
  • ISSN:11-2129/TE
  • 分类号:113-124
摘要
结合液滴成核与生长模型,以及气、液流动控制方程建立了超声速凝结流动数学模型,对空气+水+乙醇三组分(双可凝)气体超声速流动条件下凝结特性进行了数值计算,研究了三组分气体超声速凝结特性影响因素,通过与空气+水双组分(单可凝)气体对比,分析了第二种可凝组分对凝结成核的影响,并开展了实验验证与对比分析。结果表明:随着三组分气体中乙醇含量的升高,Laval喷管内成核率、液滴数均增大,但成核区收窄,液滴生长区向前移动;在入口可凝气体为饱和状态下,升高入口温度与压力均能促进凝结的发生,使Wilson点向喉部移动,进而提高出口气体湿度;与双组分气体相比,三组分气体发生凝结的Wilson点更靠近喉部,出口湿度更大,说明三组分气体发生凝结时,两种可凝气体的凝结过程是相互促进的;Laval喷管沿程压力及Wilson点测试结果与数值计算结果吻合较好,说明所建立的数学模型具有较高的准确性。
        Based on droplet nucleation-growth model and gas-liquid flow control equation,gas supersonic condensation flow mathematical model of air+ water+ethanol ternary mixture(double condensable)was established.Numerical simulation of supersonic condensation process was carried out to investigate the impact factors in supersonic condensation.Compared with air+ water binary gas mixture(single condensable),the impact of the secondary condensable component on condensation process was studied.It has been demonstrated that the nucleation rate and droplet number increase when ethanol content goes up,but the nucleation zone becomes narrow and the droplet growth zone moves forward.When the condensable components are saturated at the inlet,higher pressure and temperature favor inlet liquid condensation.In addition,the Wilson point moves to the throat,and the humidity of the outlet gas increases.Compared with binary mixture,the Wilson point of condensation is closer to the throat and the outlet humidity is greater in the ternary mixture.This indicates that the condensation of water and ethanol can affect each other.The experimental data of pressure and Wilson point agree well with the numerical simulation results.Therefore,it can be concluded that the established mathematical model is reliable and simulation results are accurate.
引文
[1]文闯.湿天然气超声速旋流分离机理研究[D].青岛:中国石油大学,2014.
    [2]BIAN J,JIANG W M,TENG L,et al.Structure improvements and numerical simulation of supersonic separators[J].Chemical Engineering and Processing,2016,110(12):214-219.
    [3]蒋文明,刘中良,刘恒伟,等.双组分混合物一维超音速分离管内数值模拟[J].石油学报(石油加工),2008,24(6):697-701.(JIANG Wenming,LIU Zhongliang,LIU Hengwei,et al.Numerical simulation of twocomponent mixture in one-dimensional supersonic separator[J].Acta Petrolei Sinica(Petroleum Processing Section),2008,24(6):697-701.)
    [4]JIANG W M,BIAN J,WU A,et al.Investigation of supersonic separation mechanism of CO2in natural gas applying the discrete particle method[J].Chemical Engineering and Processing,2018,37(1):272-279.
    [5]SUN W J,CAO X,YANG W,et al.Numerical simulation of CO2condensation process from CH4-CO2binary gas mixture in supersonic nozzles[J].Separation and Purification Technology,2017,118(29):458-470.
    [6]孙文娟,曹学文,杨文,等.Laval喷管内二氧化碳凝结过程研究[J].石油学报(石油加工),2017,33(4):763-770.(SUN Wenjuan,CAO Xuewen,YANG Wen,et al.Study on the carbon dioxide condensation process in a Laval nozzle[J].Acta Petrolei Sinica(Petroleum Processing Section),2017,33(4):763-770.)
    [7]杨文,曹学文,徐晓婷,等.高速膨胀天然气凝结流动特性[J].石油学报(石油加工),2016,32(1):73-81.(YANG Wen,CAO Xuewen,XU Xiaoting,et al.Flow and condensation characteristics of natural gas with high speed expansion[J].Acta Petrolei Sinica(Petroleum Processing Section),2016,32(1):73-81.)
    [8]GYARMATHY G.The spherical droplet in gaseous carrier streams:Review and synthesis[J].Multiphase Science&Technology,1982,1(1):99-279.
    [9]YOUNG J B.The condensation and evaporation of liquid droplets in a purevapour at arbitrary Knudsen number[J].International Journal of Heat&Mass Transfer,1991,34(7):1649-1661.
    [10]YOUNG J B.The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inertgas[J].International Journal of Heat&Mass Transfer,1993,68(36):2941-2956.
    [11]LUIJTEN C C M,VAN DONGEN M E H.Nucleation at high pressure.I.Theoretical considerations[J].Journal of Chemical Physics,1999,111(18):8524-8534.
    [12]LUIJTEN CC M,PEETERS P,van DONGEN M E H.Nucleation at high pressure.II.Wave tube data and analysis[J].Journal of Chemical Physics,1999,111(18):8535-8544.
    [13]PEETERS P,LUIJTEN C C M,van DONGEN M E H.Transitional droplet growth and diffusion coefficients[J].International Journal of Heat&Mass Transfer,2001,44(1):181-193.
    [14]DELALE C F,LAMANNA G,van DONGEN M E H.On the stability of stationary shock waves in nozzle flows with homogeneous condensation[J].Physics of Fluids,2001,13(9):2706-2719.
    [15]LAMANNA G,POPPEL J V,van DONGEN M E H.Experimental determination of droplet size and density field in condensing flows[J].Experiments in Fluids,2002,32(3):381-395.
    [16]李亮,程代京,丰镇平,等.汽轮机湿蒸汽级中凝结流动的三维数值分析[J].工程热物理学报,2006,9(4):571-573.(LI Liang,CHENG Daijing,FENGZhenping,et al.Three-dimensional simulation of the condensing flow in the wet steam stages of a steam turbin[J].Journal of Engineering Thermophysics,2006,9(4):571-573.)
    [17]巫志华,李亮,丰镇平.湿蒸汽两相流动问题的耦合求解[J].工程热物理学报,2005,26(4):578-580.(WUZhihua,LI Liang,FENG Zhenping.A couple method for the solution of wet steam two phase flows[J].Journal of Engineering Thermophysics,2005,26(4):578-580.)
    [18]杨勇.水蒸气超音速流动中的非平衡相变与激波效应[D].大连:大连理工大学,2010.
    [19]沈胜强,杨勇,张琨,等.水蒸气超音速非平衡流动的变压凝结特性[J].化工学报,2010,61(4):820-824.(SHEN Shengqiang,YANG Yong,ZHANG Kun,et al.Condensation characteristics of supersonic nonequilibrium steam flow under different pressures[J].CIESC Journal,2010,61(4):820-824.)
    [20]刘杨,边江,郭晓明,等.Laval喷管内激波位置的计算及制冷性能分析[J].低温与超导,2016,44(6):14-17.(LIU Yang,BIAN Jiang,GUO Xiaoming,et al.Calculation of shock-wave position and analysis of refrigeration performance in Laval nozzle[J].Cryogenics&Superconductivity,2016,44(6):14-17.)
    [21]刘杨,边江,郭晓明,等.Laval喷管结构对流动特性和制冷性能的影响[J].低温与超导,2016,44(12):67-71,76.(LIU Yang,BIAN Jiang,GUO Xiaoming,et al.Effect of Laval nozzle structure on the flow characteristic and refrigeration performance[J].Cryogenics&Superconductivity,2016,44(12):67-71,76.)
    [22]YANG Y,WALTHER J H,YAN Y,et al.CFDmodelling of condensation process of water vapor in supersonic flows[J].Applied Thermal Engineering,2017,115(1):1357-1362.
    [23]CAO X,YANG W.Numerical simulation of binary-gas condensation characteristics in supersonic nozzles[J].Journal of Natural Gas Science&Engineering,2015,25(4):197-206.
    [24]杨文,侯志强,陈鹏,等.双组分气体自发凝结成核模型修正[J].石油学报(石油加工),2017,33(2):273-280.(YANG Wen,HOU Zhiqiang,CHEN Peng,et al.Modification of models for binary component vapor spontaneous nucleation[J].Acta Petrolei Sinica(Petroleum Processing Section),2017,33(2):273-280.)
    [25]GYARMATHY G.Grundlagen einer Theorie der Nassdampfturbine[D].Zürich:Eidgenoessische Technische Hochschule Zuerich,1962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700