一种新型质子治疗剂量递送系统的设计研究及模拟验证
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and verification of a new compact dose delivery system for proton therapy
  • 作者:常城 ; 王若曦 ; 杜乙 ; 岳海振 ; 吴昊 ; 张艺宝
  • 英文作者:CHANG Cheng;WANG Ruoxi;DU Yi;YUE Haizhen;WU Hao;ZHANG Yibao;Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute;
  • 关键词:激光等离子体加速 ; 质子治疗 ; 治疗头系统 ; 流线型散射体 ; 蒙特卡罗模拟
  • 英文关键词:laser-plasma acceleration;;proton therapy;;nozzle system;;contoured scatter;;Monte Carlo simulation
  • 中文刊名:YXWZ
  • 英文刊名:Chinese Journal of Medical Physics
  • 机构:北京大学肿瘤医院暨北京市肿瘤防治研究所放疗科/恶性肿瘤发病机制及转化研究教育部重点实验室;
  • 出版日期:2019-07-25
  • 出版单位:中国医学物理学杂志
  • 年:2019
  • 期:v.36;No.192
  • 基金:首都卫生发展科研专项(首发2018-4-1027);; 北京市自然科学基金(7172048,1184014);; 教育部科技发展中心产学研创新基金-“智融兴教”基金(2018A01019);; 国家自然科学基金(11505012);; 北京市属医院科研培育计划项目(PX2019042,PX2016060);; 四川省科技计划资助(2018HH0099);; 北京市医院管理局“青苗”计划专项经费(QML20171104)
  • 语种:中文;
  • 页:YXWZ201907001
  • 页数:6
  • CN:07
  • ISSN:44-1351/R
  • 分类号:7-12
摘要
目的:针对激光等离子体加速的质子束流特性,设计用于剂量递送的新型紧凑治疗头系统,并通过模拟计算验证该方法的有效性与适用性。方法:基于实验上已实现的激光质子束流参数,利用散射体设计软件NEU(Nozzles with Everything Upstream)进行流线型散射体设计。通过散角选择和能散调制进一步优化剂量递送效率,并利用蒙特卡罗模拟计算软件TOPAS(TOol for PArticle Simulation)及底层的Geant4(GEometry ANd Tracking)计算引擎分析并验证激光质子通过此剂量递送方法后水模体中的剂量分布。结果:在直径6 cm、高5 cm的圆柱形靶区内,深度剂量分布平坦度在±1%以内,横向剂量分布在±3%以内。结论:此剂量递送方法及系统适用于现阶段激光质子束流特性,水模体靶区内剂量递送均匀、高效且稳定。
        Objective In view of the characteristics of proton beams after laser-plasma acceleration, to design a new type of compact nozzle system for dose delivery, and verify the applicability and efficiency of the proposed method by numerical simulation.Methods Based on the proton beam properties achieved in the laser-plasma acceleration, a contoured scatter was designed with the common software NEU(Nozzle with Everything Upstream). With proper selection of the divergence angle and the energy spread of the proton beams, the efficiency of dose delivery was further improved. After the dose delivery with the proposed method, the dose distribution of a water phantom was analyzed and verified with TOPAS(TOol for PArticle Simulation)/Geant4(GEometry ANd Tracking). Results The flatness of the depth dose distribution in a cylindrical target area with a diameter of 6 cm and a height of 5 cm was within ±1%, and the lateral flatness was within ±3%. Conclusion The proposed compact nozzle system and dose delivery method are applicable to the characteristics of the laser-driven proton beam. The dose in the target areas of water phantom is able to be delivered uniformly, efficiently and robustly.
引文
[1]MOHAN R,GROSSHANS D.Proton therapy-present and future[J].Adv Drug Deliv Rev,2017,109:26-44.
    [2]SCHIPPERS J M,LOMAX A J.Emerging technologies in proton therapy[J].Acta Oncol,2011,50(6):838-850.
    [3]SCHIPPERS J M.Miniaturizing proton therapy:a technical challenge with unclear clinical impact[J].Int J Radiat Oncol Biol Phys,2016,95(1):149-153.
    [4]MALKA V,FAURE J,GAUDUEL Y A,et al.Principles and applications of compact laser-plasma accelerators[J].Nat Phys,2008,4(6):447-453.
    [5]OWEN H,LOMAX A,JOLLY S.Current and future accelerator technologies for charged particle therapy[J].Nucl Instrum Meth A,2016,809:96-104.
    [6]MASOOD U,COWAN T E,ENGHARDT W,et al.A light-weight compact proton gantry design with a novel dose delivery system for broad-energetic laser-accelerated beams[J].Phys Med Biol,2017,62(13):5531-5555.
    [7]MASOOD U,BUSSMANN M,COWAN T E,et al.A compact solution for ion beam therapy with laser accelerated protons[J].Appl Phys B,2014,117(1):41-52.
    [8]MACCHI A,BORGHESI M,PASSONI M.Ion acceleration by superintense laser-plasma interaction[J].Rev Mod Phys,2013,85(2):751-793.
    [9]WAGNER F,DEPPERT O,BRABETZ C,et al.Maximum proton energy above 85 Me V from the relativistic interaction of laser pulses with micrometer thick CH2targets[J].Phys Rev Lett,2016,116(20):205002.
    [10]KIM I J,PAE K H,CHOI I W,et al.Radiation pressure acceleration of protons to 93 MeV with circularly polarized petawatt laser pulses[J].Phys Plasmas,2016,23(7):070701.
    [11]HIGGINSON A,GRAY R J,KING M,et al.Near-100 Me V protons via a laser-driven transparency-enhanced hybrid acceleration scheme[J].Nat Commun,2018,9(1):724.
    [12]KIM I J,PAE K H,KIM C M,et al.Transition of proton energy scaling using an ultrathin target irradiated by linearly polarized femtosecond laser pulses[J].Phys Rev Lett,2013,111(16):165003.
    [13]HOFMANN I,MEYER-TER-VEHN J,YAN X,et al.Collection and focusing of laser accelerated ion beams for therapy applications[J].Phys Rev Spec Top-Ac,2011,14(3):031304.
    [14]CIRRONE G P,CARPINELLI M,CUTTONE G,et al.ELIMED,future hadrontherapy applications of laser-accelerated beams[J].Nucl Instrum Meth A,2013,730:174-177.
    [15]KAR S,AHMED H,PRASAD R,et al.Guided post-acceleration of laser-driven ions by a miniature modular structure[J].Nat Commun,2016,7:10792.
    [16]BUSOLD S,ALMOMANI A,BAGNOUD V,et al.Shaping laser accelerated ions for future applications-the LIGHT collaboration[J].Nucl Instrum Meth A,2014,740(4):94-98.
    [17]HILZ P,OSTERMAYR T M,HUEBL A,et al.Isolated proton bunch acceleration by a petawatt laser pulse[J].Nat Commun,2018,9(1):423.
    [18]YAN X Q,LIN C,SHENG Z M,et al.Generating high-current monoenergetic proton beams by a circularly polarized laser pulse in the phase-stable acceleration regime[J].Phys Rev Lett,2008,100(13):135003.
    [19]GENG Y X,QING L,SHOU Y R,et al.Generating proton beams exceeding 10 MeV using high contrast 60TW laser[J].Chinese Physics Letters,2018,35(9):092901.
    [20]LINZ U,ALONSO J.What will it take for laser driven proton accelerators to be applied to tumor therapy?[J].Phys Rev Spec TopAc,2007,10(9):094801.
    [21]LINZ U,ALONSO J.Laser-driven ion accelerators for tumor therapy revisited[J].Phys Rev Accel Beams,2016,19(12):124802.
    [22]ZHU J G,ZHU K,TAO L,et al.Beam line design of compact laser plasma accelerator[J].Chinese Physics Letters,2017,34(5):054101.
    [23]SCUDERI V,BIJAN J S,CARPINELLI M,et al.Development of an energy selector system for laser-driven proton beam applications[J].Nucl Instrum Meth A,2014,740:87-93.
    [24]ROMANO F,SCHILLACI F,CIRRONE G P,et al.The ELIMEDtransport and dosimetry beamline for laser-driven ion beams[J].Nucl Instrum Meth A,2016,829:153-158.
    [25]SCHELL S,WILKENS J J.Advanced treatment planning methods for efficient radiation therapy with laser accelerated proton and ion beams[J].Med Phys,2010,37(10):5330-5340.
    [26]KOEHLER A M,SCHNEIDER R J,SISTERSON J M.Flattening of proton dose distributions for large-field radiotherapy[J].Med Phys,1977,4(4):297-301.
    [27]PERL J,SHIN J,SCHUMANN J,et al.TOPAS:an innovative proton Monte Carlo platform for research and clinical applications[J].Med Phys,2012,39(11):6818-6837.
    [28]AGOSTINELLI S,ALLISON J,AMAKO K,et al.Geant4-a simulation toolkit[J].Nucl Instrum Meth A,2003,506(3):250-303.
    [29]JR D L,WAMBERSIE A,WHITMORE G.Prescribing,recording,and reporting proton-beam therapy[J].ICRU,2007,7(2):1-210.
    [30]DANSON C,HILLIER D,HOPPS N,et al.Petawatt class lasers worldwide[J].High Power Laser Sci,2015,3(1):e3.
    [31]TORRISI L,ROSO L,CUTRONEO M.High repetition rate petawatt lasers[J].EPJ Web of Conferences,2018,167:01001.
    [32]ZEIL K,BAUMANN M,BEYREUTHER E,et al.Dose-controlled irradiation of cancer cells with laser-accelerated proton pulses[J].Appl Phys B,2012,110(4):437-444.
    [33]YOGO A,MAEDA T,HORI T,et al.Measurement of relative biological effectiveness of protons in human cancer cells using a laserdriven quasimonoenergetic proton beamline[J].Appl Phys Lett,2011,98(5):053701.
    [34]KRAFT S D,RICHTER C,ZEIL K,et al.Dose-dependent biological damage of tumour cells by laser-accelerated proton beams[J].New J Phys,2010,12(8):085003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700