茶树BES1转录因子全基因组鉴定与分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genome-wide Identification and Analysis of BES1 Transcription Factor Family in Camellia sinensis
  • 作者:陈雪津 ; 王鹏杰 ; 郑玉成 ; 陈笛 ; 郭永春 ; 叶乃兴
  • 英文作者:CHEN Xuejin;WANG Pengjie;ZHENG Yucheng;CHEN Di;GUO Yongchun;YE Naixing;College of Horticulture, Fujian Agriculture and Forestry University, Key Laboratory of Tea Science at Universities in Fujian;
  • 关键词:茶树 ; BES1转录因子 ; 系统进化 ; 非生物胁迫 ; 表达分析
  • 英文关键词:Camellia sinensis;;BES1 transcription factors;;phylogeny analysis;;abiotic stress;;expression analysis
  • 中文刊名:DNYX
  • 英文刊名:Acta Botanica Boreali-Occidentalia Sinica
  • 机构:福建农林大学园艺学院茶学福建省高校重点实验室;
  • 出版日期:2019-05-15
  • 出版单位:西北植物学报
  • 年:2019
  • 期:v.39
  • 基金:福建省“2011协同创新中心”中国乌龙茶产业协同创新中心专项(闽教科[2015]75号);; 国家现代农业(茶叶)产业技术体系建设专项(CARS-19);; 福建农林大学科技创新专项(CXZX2016117,CXZX2017181)
  • 语种:中文;
  • 页:DNYX201905015
  • 页数:10
  • CN:05
  • ISSN:61-1091/Q
  • 分类号:119-128
摘要
植物特异性转录因子(BRI1-EMS-SUPPRESSOR1,BES1)家族参与调节油菜素内酯(brassinosteroids,BR)信号通路,在植物生长和应对非生物胁迫的反应中发挥重要作用。该研究利用生物信息学方法对茶树BES1转录因子家族进行鉴定,分析茶树CsBES1基因在8个茶树组织中的表达模式,并对CsBES1转录因子家族在低温、干旱及ABA激素处理下的表达进行分析,以揭示茶树CsBES1转录因子家族的功能及其对环境胁迫的响应。结果显示:(1)从茶树全基因组中鉴定获得10个茶树BES1转录因子家族成员,均具有完整的BES1_N结构域;根据系统进化关系将10个CsBES1转录因子家族分成3组,分别包含2个、3个和5个成员;该家族成员每个基因含有2~11个外显子。(2)组织表达模式分析显示,茶树BES1转录因子家族在生长活跃的茶树嫩梢和成熟叶中表达量较高,不同成员之间表达存在差异性。(3)上游启动子区域分析发现大量与植物激素和非生物胁迫响应相关的顺式作用元件。(4)荧光定量检测发现,BES1基因在茶树不同胁迫处理下的表达模式不同,在低温和脱落酸处理下,CsBES1-1、CsBES1-7、CsBES1-8和CsBES1-9基因的表达量显著提高,而在干旱处理下,CsBES1-2、CsBES1-4、CsBES1-5、CsBES1-6、CsBES1-7、CsBES1-8和CsBES1-9基因的表达量显著提高。
        Plant specific transcription factor(BRI1-EMS-SUPPRESSOR1,BES1) family involved in regulating the brassinosteroids(BR) signaling pathway and play an important role in plant growth and response to abiotic stress. In this study, the BES1 transcription factor family of tea plant was identified by bioinformatics method. The expression patterns of tea CsBES1 gene in 8 tea tissues were analyzed, and the CsBES1 transcription factor family was expressed at low temperature. In order to reveal the function of CsBES1 transcription factor family and its response to environmental stress, we analyzed the expression of CsBES1 transcription factor family in tea plants under drought and ABA hormone treatment. The results showed that:(1) ten members of the BES1 transcription factor family of tea tree were identified from the whole genome of tea tree, all of which had complete BES1_N domain. According to phylogenetic relationships, 10 CsBES1 transcription factor families were divided into 3 groups, including 2, 3 and 5 members respectively. Each gene of this family contains 2~11 exons.(2) The analysis of tissue expression pattern showed that the expression of BES1 transcription factor family was higher in the young shoots and mature leaves of tea plants, and there were differences among different members.(3) The upstream promoter region analysis showed that there was a lot of cis-elements associated with various stress and hormone responses.(4) The results of fluorescence quantitative analysis showed that the expression patterns of BES1 gene were different under different stress conditions. Under low temperature and abscisic acid treatment, the expression levels of CsBES1-1, CsBES1-7, CsBES1-8 and CsBES1-9 genes increased significantly. However, the expression of CsBES1-2, CsBES1-4, CsBES1-5, CsBES1-6, CsBES1-7, CsBES1-8 and CsBES1-9 genes increased significantly under drought stress.
引文
[1] GUO J T,LOFGREN S,FARREL A.Structure-based prediction of transcription factor binding sites[J].Tsinghua Science and Technology,2014,19(6):568-577.
    [2] CENTURY K,REUBER T L,RATCLIFFE O J.Regulating the regulators:The future prospects for transcription-factor-based agricultural biotechnology products[J].Plant Physiology,2008,147(1):20-29.
    [3] YIN Y H,VAFEADOS D,TAO Y,et al.A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis[J].Cell,2005,120(2):249-259.
    [4] YIN Y H,WANG Z Y,MORA-GARCIA S,et al.BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation[J].Cell,2002,109(2):181-191.
    [5] JIANG J J,ZHANG C,WANG X L.A recently evolved isoform of the transcription factor BES1 promotes brassinosteroid signaling and development in Arabidopsis thaliana[J].The Plant Cell,2015,27(2):361-374.
    [6] SONG X M,MA X,LI C J,et al.Comprehensive analyses of the BES1 gene family in Brassica napus and examination of their evolutionary pattern in representative species[J].BMC Genomics,2018,19(1):346.
    [7] LIU Z,QANMBER G,LU L L,et al.Genome-wide analysis of BES1 genes in Gossypium revealed their evolutionary conserved roles in brassinosteroid signaling[J].Science China.Life Sciences,2018,61(12):1 566-1 582.
    [8] YU H Q,FENG W Q,SUN F A,et al.Cloning and characterization of BES1/BZR1 transcription factor genes in maize[J].Plant Growth Regulation,2018,86(2):235-249.
    [9] GAO Y M,HU J K,ZHAO T T,et al.Genome-wide identification and expression pattern analysis of BRI1-EMS-suppressor transcription factors in tomato under abiotic stresses[J].Journal of the American Society for Horticultural Science,2018,143(1):84-90.
    [10] SONG X M,LI Y,HOU X L.Genome-wide analysis of the AP2/ERF transcription factor superfamily in Chinese cabbage (Brassica rapa ssp.pekinensis)[J].BMC Genomics,2013,14:573.
    [11] XIE L Q,YANG C J,WANG X L.Brassinosteroids can regulate cellulose biosynthesis by controlling the expression of CESA genes in Arabidopsis[J].Journal of Experimental Botany,2011,62(13):4 495-4 506.
    [12] YE Q Q,ZHU W J,LI L,et al.Brassinosteroids control male fertility by regulating the expression of key genes involved in Arabidopsis anther and pollen development[J].Proceedings of the National Academy of Sciences of the United States of America,2010,107(13):6 100-6 105.
    [13] LOZANO-DURáN R,MACHO A P,BOUTROT F,et al.The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth[J].eLife,2013,2:e00983.
    [14] LI Q F,LU J,YU J W,et al.The brassinosteroid-regulated transcription factors BZR1/BES1 function as a coordinator in multisignal-regulated plant growth[J].Biochimica et Biophysica Acta.Gene Regulatory Mechanisms,2018,1861(6):561-571.
    [15] 安汶铠,常丹,张富春,等.干旱胁迫下棉花幼苗转录因子BES1/BZR1对外源油菜素内酯的响应表达特征[J].西北植物学报,2015,35(7):1 311-1 316.AN W K,CHANG D,ZHANG F C,et al.Expression characteristics of transcription factor BES1/BRI1 of cotton seedling in response to brassinosteroid under drought stress[J].Acta Botanica Boreali-Occidentalia Sinica,2015,35(7):1 311-1 316.
    [16] WEI C,YANG H,WANG S,et al.Draft genome sequence of Camellia sinensis var.sinensis provides insights into the evolution of the tea genome and tea quality[J].Proc Natl Acad Sci U S A,2018,115(18):E4151-e4158.
    [17] LAMESCH P,BERARDINI T Z,LI D H,et al.The Arabidopsis information resource (TAIR):Improved gene annotation and new tools[J].Nucleic Acids Research,2012,40(Database issue):D1202-D1210.
    [18] CHENG F,LIU S Y,WU J,et al.BRAD,the genetics and genomics database for Brassica plants[J].BMC Plant Biology,2011,11:136.
    [19] HALL B G.Building phylogenetic trees from molecular data with MEGA[J].Molecular Biology and Evolution,2013,30(5):1 229-1 235.
    [20] HU B,JIN J P,GUO A Y,et al.GSDS 2.0:an upgraded gene feature visualization server[J].Bioinformatics (Oxford,England),2015,31(8):1 296-1 297.
    [21] BAILEY T L,BODEN M,BUSKE F A,et al.MEME SUITE:tools for motif discovery and searching[J].Nucleic Acids Research,2009,37(Web Server issue):W202-W208.
    [22] LESCOT M,DéHAIS P,THIJS G,et al.PlantCARE,a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J].Nucleic Acids Research,2002,30(1):325-327.
    [23] WU Z J,TIAN C,JIANG Q,et al.Selection of suitable reference genes for qRT-PCR normalization during leaf development and hormonal stimuli in tea plant (Camellia sinensis)[J].Scientific Reports,2016,6:19 748.
    [24] LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C(T)) Method[J].Methods (San Diego,Calif.),2001,25(4):402-408.
    [25] JIN J P,TIAN F,YANG D C,et al.PlantTFDB 4.0:toward a central hub for transcription factors and regulatory interactions in plants[J].Nucleic Acids Research,2017,45(D1):D1040-D1045.
    [26] WU P,SONG X M,WANG Z,et al.Genome-wide analysis of the BES1 transcription factor family in Chinese cabbage (Brassica rapa ssp.pekinensis)[J].Plant Growth Regulation,2016,80(3):291-301.
    [27] 曾泽媛,罗勇,郑楚楚,等.茶树PPO基因家族的鉴定与分析[J].茶叶科学,2018,38(4):385-395.ZENG Z Y,LUO Y,ZHENG C C,et al.The identification and analysis of polyphenol oxidase gene family in tea plant(camellia sinensis)[J].Journal of Tea Science,2018,38(4):385-395.
    [28] ESPINOSA-RUIZ A,MARTíNEZ C,DE LUCAS M,et al.TOPLESS mediates brassinosteroid control of shoot boundaries and root meristem development in Arabidopsis thaliana[J].Development (Cambridge,England),2017,144(9):1 619-1 628.
    [29] SAHA G,PARK J I,JUNG H J,et al.Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa[J].Plant Physiology and Biochemistry,2015,92:92-104.
    [30] 束红梅,郭书巧,巩元勇,等.陆地棉油菜素内酯信号基因GhBES1家族的鉴定及表达分析[J].华北农学报,2017,32(4):7-12.SHU H M,GUO S Q,GONG Y Y,et al.Identification and expression analysis of the brassinosteroid signal gene GhBES1 family in upland cotton[J].Acta Agriculturae Boreali-Sinica,2017,32(4):7-12.
    [31] 刘丹,梁丹,王建贺,等.小麦TaBES1/BZR1基因的克隆及其在祖先种和六倍体小麦中的序列比较[J].江苏农业学报,2019,35(1):238-240.LIU D,LIANG D,WANG J H,et al.Cloning and sequences analysis of TaBES1/BZR1 in ancestors and hexaploid wheat[J].Jiangsu Journal of Agricultural Sciences,2019,35(1):238-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700