模拟燃气热冲击条件下搪瓷基复合涂层的防护机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Protection Mechanism Study of Enamel-Based Composite Coatings Under the Simulated Combusting Gas Shock
  • 作者:郭策安 ; 陈明辉 ; 廖依敏 ; 苏北 ; 谢冬柏 ; 朱圣龙 ; 王福会
  • 英文作者:GUO Cean;CHEN Minghui;LIAO Yimin;SU Bei;XIE Dongbai;ZHU Shenglong;WANG Fuhui;Equipment Engineering School, Shenyang Ligong University;Shenyang National Laboratory for Materials Science, Institute of Metal Research,Chinese Academy of Sciences;Chongqing Jianshe Industry (Group) LLC;School of Materials Science and Engineering, Northeastern University;Xinjiang Police College;
  • 关键词:搪瓷复合涂层 ; 高温腐蚀 ; Al2O3 ; NiCrAlY ; 热冲击
  • 英文关键词:enamel-based composite coating;;high-temperature corrosion;;Al2O3;;NiCrAlY;;thermal shock
  • 中文刊名:JSXB
  • 英文刊名:Acta Metallurgica Sinica
  • 机构:沈阳理工大学装备工程学院;中国科学院金属研究所沈阳材料科学国家研究中心;重庆建设工业(集团)有限责任公司;东北大学材料科学与工程学院;新疆警察学院;
  • 出版日期:2018-12-11
  • 出版单位:金属学报
  • 年:2018
  • 期:v.54
  • 基金:国家自然科学基金项目No.51471177;; 中央高校基本科研业务费专项基金项目No.N160205001;; 辽宁省自然科学基金项目No.201602643~~
  • 语种:中文;
  • 页:JSXB201812013
  • 页数:8
  • CN:12
  • ISSN:21-1139/TG
  • 分类号:113-120
摘要
在K38G高温合金基体上分别设计涂覆了75%搪瓷釉+25%Al2O3(E25A)和70%搪瓷釉+20%Al2O3+10%NiCrAlY (E20A10M) 2种搪瓷基复合涂层,对比研究了2种搪瓷基复合涂层在900℃下模拟燃气热冲击条件下的防护机制。热冲击的火焰采用C3H8+O2混合气体产生,喷射到试样涂层表面的压力为0.4 MPa,火焰喷射到试样涂层达到900℃后保持15 s,而后空气中冷却120 s为一个热冲击循环周期。结果表明,经燃气冲击150 cyc后,2种涂层与合金基体界面结合牢固,表现出优异的抗界面剥落能力。其中,E25A涂层热冲击前后的涂层组织结构无明显变化,表面完好,Al2O3第二相的加入提高了搪瓷的高温稳定性;而E20A10M涂层热冲击后表面产生了孔洞、开裂,发生了轻微的表层剥离。金属粉与搪瓷的界面反应Cr(NiCrAlY)+ZnO(enamel)→CrO(interface)+Zn↑,致使涂层表面鼓包,在燃气切应力和界面热应力作用下,表层金属颗粒以及搪瓷发生剥离。
        High-temperature-resistant enamel coatings have been reported to be applied in noncritical hot end components of aero-engine and gas turbine recently. Although the enamel with a series of excellent properties can be as high-temperature-resistant coating material under appropriate condition,its lower soft point and inherent brittleness limit their use in broader application under severe service condition. Enamel-based composite coatings(an enamel matrix with the addition of ceramic particles and/or metal platelets) can remarkably increase the properties of the enamel coating and their protection mechanism under dynamic thermal shock needs further investigation. In this work, two kinds of enamel-based composite coatings, 70%enamel+25%Al2 O3 and 70%enamel+20%Al2 O3+10%NiCrAlY(mass fraction, %)abbreviated to E25 A and E20 A10 M respectively, were designed and fired on K38 G superalloy substrate,and their protection mechanism was comparatively studied at 900 ℃ under the simulated combusting gas shock. The thermal shock fire was produced by the mixture gas of C3 H8+O2 and its ejecting pressure on the coating surface was 0.4 MPa. After the temperature has been stable at 900 ℃, samples were hold for 15 s and then cooling down in air for 120 s, constituting a thermal shock cycle. Results indicated that,after 150 cyc of thermal shock, both the coatings bond well with the alloy substrate, thus shows high resistance to spallation along interface. For the E25 A coating, its microstructure had no obvious change after thermal shock and the surface is still intact. The addition of secondary phase Al2 O3 increases the stability of enamel at high temperature. With regard to the E20 A10 M coating, holes and cracks form consecutively, and peeling off occurs at surface after thermal shock. Interfacial reaction between the NiCrAlY particles and enamel following Cr(NiCrAlY)+ZnO(enamel)→CrO(interface)+Zn↑ results in the formation of enamel swelling, which then, under the synergistic effect of combusting gas shear stress and interface thermal stress,leads to the peeling off of enamel and metal inclusions at surface.
引文
[1] Liu W, Li W Z, Yang J B, et al. Current research status of enamel coatings on titanium alloys[J]. Mater. Rev., 2013, 27(3):45(刘伟,李伟洲,杨剑冰等.钛合金搪瓷涂层研究现状[J].材料导报, 2013, 27(3):45)
    [2] Zhang C Y, Zhang Q G, Yang W K. Research on process improvement of the enamel coating for the 2nd stage guide vane of certain turbojet engine[J]. Aviat. Maint. Eng., 2015,(10):99(张从艳,张清贵,杨武奎.某型涡喷发动机II级导向器叶片搪瓷涂层工艺方法改进技术研究[J].航空维修与工程, 2015,(10):99)
    [3] Choi S Y, Ahn J M. Viscous sintering and mechanical properties of3Y-TZP-reinforced LAS glass-ceramic composites[J]. J. Am. Ceram. Soc., 1997, 80:2982
    [4] Boccaccini A R, Pearce D H. Toughening of glass by a piezoelectric secondary phase[J]. J. Am. Ceram. Soc., 2003, 86:180
    [5] Rouxel T, Baron B, Verdier P, et al. SiC particle reinforced oxynitride glass:Stress relaxation, creep and strain-rate imposed experiments[J]. Acta Mater., 1998, 46:6115
    [6] Lange F F. Fracture energy and strength behavior of a sodium borosilicate glass-Al2O3composite system[J]. J. Am. Ceram. Soc.,1971, 54:614
    [7] Bolelli G, Cannillo V, Lusvarghi L, et al. Glass-alumina composite coatings by plasma spraying. Part I:Microstructural and mechanical characterization[J]. Surf. Coat. Technol., 2006, 201:458
    [8] Ray A, Tiwari A N. Compaction and sintering behaviour of glassalumina composites[J]. Mater. Chem. Phys., 2001, 67:220
    [9] Krstic V V, Nicholson P S, Hoagland R G. Toughening of glasses by metallic particles[J]. J. Am. Ceram. Soc., 1981, 64:499
    [10] Banuprakash G, Katyal V, Murthy V S R, et al. Mechanical behaviour of borosilicate glass-copper composites[J]. Composites,1997, 28A:861
    [11] Cannillo V, Leonelli C, Manfredini T, et al. Mechanical performance and fracture behaviour of glass-matrix composites reinforced with molybdenum particles[J]. Compos. Sci. Technol.,2005, 65:1276
    [12] Dlouhy I, Reinisch M, Boccaccini A R, et al. Fracture characteristics of borosilicate glasses reinforced by metallic particles[J]. Fatigue Fract. Eng. Mater. Struct., 1997, 20:1235
    [13] Biswas D R. Strength and fracture toughness of indented glassnickel compacts[J]. J. Mater. Sci., 1980, 15:1696
    [14] Nivas Y, Fulrath R M. Limitation of Griffith flaws in glass-matrix composites[J]. J. Am. Ceram. Soc., 1970, 53:188
    [15] Dlouhy I, Boccaccini A R. Preparation, microstructure and mechanical properties of metal-particulate/glass-matrix composites[J]. Compos. Sci. Technol., 1996, 56:1415
    [16] Pernot F, Rogier R. Mechanical properties of phosphate glassceramic-316L stainless steel composites[J]. J. Mater. Sci., 1993,28:6676
    [17] Guo J T, Yuan C, Yang H C, et al. Creep-rupture behavior of a directionally solidified nickel-base superalloy[J]. Metall. Mater.Trans., 2001, 32A:1103
    [18] Wang J L, Chen M H, Cheng Y X, et al. Hot corrosion of arc ion plating NiCrAlY and sputtered nanocrystalline coatings on a nickelbased single-crystal superalloy[J]. Corros. Sci., 2017, 123:27
    [19] Guo C A, Wang W, Cheng Y Y, et al. Yttria partially stabilised zirconia as diffusion barrier between NiCrAlY and Ni-base single crystal RenéN5 superalloy[J]. Corros. Sci., 2015, 94:122
    [20] Chen M H, Shen M L, Wang X, et al. Oxidation and thermal shock behavior of a glass-alumina composite coating on K38G superalloy at 1000℃[J]. J. Mater. Sci. Technol., 2012, 28:433
    [21] Wu M Y. A study on microstructure regulation and protection mechanism against high temperature oxidation of enamel-based composite coatings[D]. Shenyang:Institute of Metal Research,Chinese Academy of Sciences, 2017(邬明玉.搪瓷基复合涂层的组织结构调控及抗高温氧化机制研究[D].沈阳:中国科学院金属研究所, 2017)
    [22] Chen M H, Zhu S L, Shen M L, et al. Effect of NiCrAlY platelets inclusion on the mechanical and thermal shock properties of glass matrix composites[J]. Mater. Sci. Eng., 2011, A528:1360
    [23] Chen M H, Zhu S L, Wang F H. High temperature oxidation of NiCrAlY, nanocrystalline and enamel-metal nano-composite coatings under thermal shock[J]. Corros. Sci., 2015, 100:556
    [24] Feng M, Chen M H, Yu Z D, et al. Comparative study of thermal shock behavior of the arc ion plating NiCrAlY and the enamel based composite coatings[J]. Acta Metall. Sin., 2017, 53:1636(丰敏,陈明辉,余中狄等.多弧离子镀NiCrAlY涂层与搪瓷基复合涂层的抗热震行为对比研究[J].金属学报, 2017, 53:1636)
    [25] Donald I W. Preparation, properties and chemistry of glass-and glass-ceramic-to-metal seals and coatings[J]. J. Mater. Sci., 1993,28:2841
    [26] Donald I W, Metcalfe B L, Gerrard L A. Interfacial reactions in glass-ceramic-to-metal seals[J]. J. Am. Ceram. Soc., 2008, 91:715

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700