第一性原理在锂离子电池电极材料中的应用研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application research status of first-principles in lithium-ion battery electrode materials
  • 作者:宋刘斌 ; 黎安娴 ; 肖忠良 ; 池振振 ; 曹忠
  • 英文作者:SONG Liubin;LI Anxian;XIAO Zhongliang;CHI Zhenzhen;CAO Zhong;Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology;
  • 关键词:锂离子电池 ; 第一性原理 ; 密度泛函理论 ; 正极材料
  • 英文关键词:lithium-ion batteries;;first-principles;;density functional theory;;cathode materials
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:长沙理工大学化学与生物工程学院电力与交通材料保护湖南省重点实验室;
  • 出版日期:2019-04-16 10:34
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(21501015,21545010,31527803);; 中国科学院环境监测STS项目(KFJ-SW-STS-173)
  • 语种:中文;
  • 页:HGSZ201906003
  • 页数:9
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:33-41
摘要
在锂离子电池电极材料研究中,第一性原理计算能在理论上协助解释实验结果,为材料的合成和性能改进提供理论依据。目前第一性原理计算在锂离子电池电极材料中的应用主要集中在正极材料磷酸铁锂和层状氧化物LiMO2(M=Ni, Co, Mn, Al等)材料中,对热门三元材料,特别是三元材料改性前后界面结构变化的研究较少。围绕密度泛函理论,综述了其在电极材料工作电压、电子传导性和离子扩散性、结构稳定性、储锂容量的计算以及热力学性能预测及解释等方面的应用,对较为集中的研究方向的进展进行阐述和总结,为用第一性原理进一步研究LiNix Coy Mn1-x-yO2复合材料提供借鉴。
        In the research of lithium-ion battery electrode materials, first-principles calculation can theoretically help explain the experimental results and provide a theoretical basis for the synthesis and performance improvement of materials. At present, the application of first-principles calculation in lithium-ion battery materials mainly concentrated in the positive electrode material, for example, LiFePO4 and layered oxide LiMO2(M=Ni, Co, Mn, Al,etc.), for popular ternary materials, especially there was few research on the interface structure change of modified front-rear. The application of density functional theory in the electrode material operating voltage, electron conductivity, ion diffusivity, structural stability, lithium storage capacity and thermodynamic performance prediction were reviewed. The development of more concentrated research directions was elaborated and summarized, and it provided a reference for further study of LiNixCoyMn1-x-yO2 composites using the first principles.
引文
[1]田萌.锂离子电池新型正极材料的第一性原理研究[D].北京:中国科学院大学(中国科学院物理研究所), 2017.Tian M. First-principles calculations on new cathode materials for lithium-ion batteries[D]. Beijing:The University of Chinese Academy of Sciences(Institute of Physics Chinese Academy of Sciences), 2017.
    [2] Liu E, Wang J, Shi C, et al. Anomalous interfacial lithium storage in graphene/TiO2for lithium ion batteries[J]. ACS Applied Materials&Interfaces, 2014, 6(20):18147-18151.
    [3] Fei Z, Cococcioni M, Kang K, et al. The Li intercalation potential of LiMPO4and LiMSiO4olivines with M=Fe, Mn, Co, Ni[J].Electrochemistry Communications, 2004, 6(11):1144-1148.
    [4]陈昌国,刘艳,司玉军,等.锂离子电池正极材料LiFePO4的密度泛函研究[J].分子科学学报, 2007, 23(4):248-252.Chen C G, Liu Y, Si Y J, et al. Density functional study of cathode material LiFePO4for lithium ion battery[J]. Journal of Molecular Science, 2007, 23(4):248-252.
    [5] Hassan A S, Navulla A, Meda L, et al. Molecular mechanisms for the lithiation of ruthenium oxide nanoplates as lithium-ion battery anode materials:an experimentally motivated computational study[J]. Journal of Physical Chemistry C, 2015, 119(18):9705-9713.
    [6] Lv Y, Chen B, Zhao N, et al. Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries[J]. Surface Science, 2016, 651:10-15.
    [7] Iddir H, Benedek R. First-principles analysis of phase stability in layered–layered composite cathodes for lithium-ion batteries[J].Chemistry of Materials, 2014, 26(7):2407-2413.
    [8] Gao Y, Wang X, Ma J, et al. Selecting substituent elements for Lirich Mn-based cathode materials by density functional theory(DFT)calculations[J]. Chemistry of Materials, 2015, 27(9):3456-3461.
    [9] Wang T, Zhao N, Shi C, et al. Interface and doping effects on Li ion storage behavior of graphene/Li2O[J]. Journal of Physical Chemistry C, 2017, 121(36):19559-19567.
    [10]薛雷,张秀娟,张淑凯.锂离子电池层状正极材料第一性原理计算新进展[J].材料导报, 2016, 30(1):122-127.Xue L, Zhang X J, Zhang S K. New progresses of first-principles calculation on layered cathode materials for lithium ion batteries[J]. Material Review, 2016, 30(1):122-127.
    [11]沈丁,李犇,杨绍斌,等.锂离子电池聚阴离子型正极材料的第一性原理研究进展[J].化工进展, 2013, 32(4):837-841.Shen D, Li B, Yang S B, et al. Research progress of first principle of polyanion type cathode material for lithium-ion battery[J].Chemical Industry and Engineering Progress, 2013, 32(4):837-841.
    [12]徐宇虹,尹鸽平,左朋建.锂离子电池正极材料的第一性原理[J].化学进展, 2008, 20(11):1827-1833.Xu Y H, Yin G P, Zuo P J. First principle calculations of cathode in Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2008, 20(11):1827-1833.
    [13]张培新,陈建华,魏群.掺杂材料分子模拟与计算[M].北京:科学出版社, 2012.Zhang P X, Chen J H, Wei Q. Molecular Simulation and Calculation of Doping Materials[M]. Beijing:Science Press, 2012.
    [14]胡英,刘洪来.密度泛函理论[M].北京:科学出版社, 2016.Hu Y, Liu H L, Density Functional Theory[M]. Beijing:Science Press, 2016.
    [15] Hohenberg P, Kohn W. Inhomogeneous electron gas[J]. Phys.Rev., 1964, 136(3B):B864–B871.
    [16]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2005.Lin M H. Quantum Chemistry Calculation Methods and Applications[M]. Beijing:Science Press, 2005.
    [17] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 2008, 140(4A):A1133-A1138.
    [18] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Phys. Rev. Lett., 1996, 77:3865.
    [19] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B Condensed Matter, 1992, 45(23):13244.
    [20]宋刘斌.锂离子电池的热电化学研究及其电极材料的计算与模拟[D].长沙:中南大学, 2013.Song L B. The thermo-eletrochemical study on lithium ion batteries and numerical calculation and simulation of electrode material in lithium ion batteries[D]. Changsha:Central South University, 2013.
    [21] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys.Rev. B Condens Matter, 1996, 54(16):11169-11186.
    [22] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Phys. Rev. B, 1999, 59(3):1758-1775.
    [23] Bl?chl P. Projector augmented-wave method[J]. Phys. Rev. B Condens Matter, 1994, 50(24):17953-17979.
    [24]孙超.基于密度泛函理论的材料设计:VO2相变温度的调控和LiFePO4电导率的提高[D].上海:上海大学, 2015.Sun C. Materials design based on density functional theory:modulation of transition temperature of VO2and improvement of conductivity of LiFePO4[D]. Shanghai:Shanghai University,2015.
    [25] Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients[J]. Reviews of Modern Physics(United States), 1992, 64(4):1045-1097.
    [26]孔婷婷.钛锂铝类水滑石/炭复合材料的制备及CO2吸附与光催化研究[D].西安:西安科技大学, 2017.Kong T T. Preparation and CO2adsorption, photocatalysis performance of Ti/Li/Al-LDHs/coke composite[D]. Xi.an:Xi.anUniversity of Science and Technology, 2017.
    [27]张福州.广义层错能的第一性原理计算及定域性分析[D].重庆:重庆大学, 2008.Zhang F Z. Generalized stacking fault energy calculation fromfirst-principles and analysis of local approximation[D].Chongqing:Chongqing University, 2008.
    [28]温亚娟.典型热电材料的第一原理计算[D].杭州:杭州电子科技大学, 2014.Wen Y J. The first principle studies of several typicalthermoelectric materials[D]. Hangzhou:Hangzhou DianziUniversity, 2014.
    [29] Nosengo N. The material code[J]. Nature, 2016, 533(7602):22.
    [30] Umebayashi Y, Mitsugi T, Fukuda S, et al. Lithium ion solvationin room-temperature ionic liquids involving bis(trifluoromethanesulfonyl)imide anion studied by Ramanspectroscopy and DFT calculations[J]. Journal of PhysicalChemistry B, 2007, 111(45):13028.
    [31] Nakayama M, Yamada S, Jalem R, et al. Density functionalstudies of olivine-type LiFePO4, and NaFePO4, as positiveelectrode materials for rechargeable lithium and sodium ionbatteries[J]. Solid State Ionics, 2016, 286:40-44.
    [32] Xiao R, Li H, Chen L. Density functional investigation on Li2MnO3[J]. Chemistry of Materials, 2012, 24(21):4242-4251.
    [33] Anisimov V I. First-principles calculations of the electronicstructure and spectra of strongly correlated systems:LDA+Umethod[J]. Journal of Physics Condensed Matter, 1995, 9(35):7359-7367.
    [34] Kong F, Longo R C, Min S P, et al. Ab initio study of dopingeffects on LiMnO2and Li2MnO3cathode materials for Li-ionbatteries[J]. Journal of Materials Chemistry A, 2015, 3(16):8489-8500.
    [35] Reimers J N. Can first principles calculations aid in lithium-ionbattery design?[J]. Journal of Power Sources, 1995, 54(1):16-19.
    [36] Aydinol M K, Kohan A F, Ceder G. Ab initio calculation of theintercalation voltage of lithium-transition-metal oxide electrodesfor rechargeable batteries[J]. Journal of Power Sources, 1997, 68(2):664-668.
    [37] Lu H L, Sun S R. Polyimide electrode materials for Li-ionbatteries via dispersion-corrected density functional theory[J].Computational Materials Science, 2018, 146:119-125.
    [38] Aydinol M K, Kohan A F, Ceder G, et al. Ab initio study of lithiumintercalation in metal oxides and metal dichalcogenides[J].Physical Review B Condensed Matter, 1997, 56(3):1353-1365.
    [39] Shi S, Ouyang C Y, Lei M, et al. Effect of Mg-doping on thestructural and electronic properties of LiCoO2:a first-principlesinvestigation[J]. Journal of Power Sources, 2007, 171(2):908-912.
    [40] Najafi M. Application of C60, C72and carbon nanotubes as anodefor lithium-ion batteries:a DFT study[J]. Materials Chemistry andPhysics, 2017, 195:195-198.
    [41] Hao S, Zhao N, Shi C, et al. Enhanced electrochemical propertiesof LiCo0.5Ni0.5O2, by Ti-doping:a first-principle study[J].Ceramics International, 2015, 41(2):2294-2300.
    [42]宋怀河,杨树斌,陈晓红.影响锂离子电池高倍率充放电性能的因素[J].电源技术, 2009, 33(6):443-448.Song H H, Yang S B, Chen X H. Factors affecting high rate chargeand discharge performance of lithium ion batteries[J]. ChineseJournal of Power Sources, 2009, 33(6):443-448.
    [43] Shi S, Liu L, Ouyang C Y, et al. Enhancement of electronicconductivity of LiFePO4by Cr doping and its identification byfirst-principles calculations[J]. Phys. Rev. B, 2003, 68:195108.
    [44] Ouyang C Y, Shi S Q, Wang Z X, et al. First-principles study of Li ion diffusion in LiFePO4[J]. Phys. Rev. B, 2004, 69:104303.
    [45] Ouyang C Y, Shi S Q, Wang Z X, et al. The effect of Cr doping onLi ion diffusion in LiFePO4from first principles investigations andMonte Carlo simulations[J]. Journal of Physics-Condensed Matter,2004, 16(13):2265.
    [46]王兆翔,陈立泉,黄学杰.锂离子电池正极材料的结构设计与改性[J].化学进展, 2011, 23(2/3):284-301.Wang Z X, Chen L Q, Huang X J. First principle calculations ofcathode in Li-ion batteries[J]. Progress in Chemistry, 2011, 23(2/3):284-301.
    [47] Ouyang C Y, Wang D Y, Shi S Q, et al. First principles study onNax Li1-xFePO4as cathode material for rechargeable lithiumbatteries[J]. Chinese Physics Letters, 2006, 23(1):61-64.
    [48]欧阳楚英.锂离子电池正极材料离子动力学性能研究[D].北京:中国科学院物理研究所, 2005.Ouyang C Y. Study on ion dynamics of cathode materials forlithium ion batteries[D]. Beijing:Institute of Physics ChineseAcademy of Sciences, 2005.
    [49] Gao L, Xu Z, Zhang S. The co-doping effects of Zr and Co onstructure and electrochemical properties of LiFePO4, cathodematerials[J]. Journal of Alloys&Compounds, 2017, 739:529-535.
    [50] Yang M Y, Kim S, Kim K, et al. Role of ordered Ni atoms in Lilayers for Li-rich layered cathode materials[J]. AdvancedFunctional Materials, 2017, 27(35):1700982.
    [51]高玉梅,杨文鑫,刘萍. LiNi0.85-xCox Mn0.15O2电化学性能的第一性原理研究[J].华南师范大学学报(自然科学版), 2017, 49(3):7-10.Gao Y M, Yang W X, Liu P. First-principles investigation onelectrochemical performance of LiNi0.8-xCox Mn0.15O2[J]. Journal ofSouth China Normal University(Natural Science Edition), 2017,49(3):7-10.
    [52] Dixit M, Markovsky B, Aurbach D, et al. Unraveling the effects ofAl doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2using first principles[J]. Journal of the Electrochemical Society,2017, 164(1):A6359-A6365.
    [53] Bianchini F, Fjellv?g H, Vajeeston P. A first-principleinvestigation of the Li diffusion mechanism in the super-ionicconductor lithium orthothioborate Li3BS3structure[J]. MaterialsLetters, 2018, 219:186-189.
    [54] Urquiza M L, Otero M, Luque G L, et al. First-principles studiesof silicon underpotential deposition on defective graphene and itsrelevance for lithium-ion battery materials[J]. ElectrochimicaActa, 2016, 208:92-101.
    [55] Rahaman O, Mortazavi B, Rabczuk T. A first-principles study onthe effect of oxygen content on the structural and electronicproperties of silicon suboxide as anode material for lithium ionbatteries[J]. Journal of Power Sources, 2016, 307:657-664.
    [56] Liao N, Zheng B, Zhou H, et al. Effect of carbon segregation onperformance of inhomogeneous SiCy O6/5as anode materials forlithium-ion battery:a first-principles study[J]. Journal of PowerSources, 2016, 334:39-43.
    [57] Luo D, Hou X, Yang J, et al. First principles studies on theelectronics structures of(Li0.75Na0.25)(Fe0.75Mn0.25)PO4cathodematerials[J]. Rare Metal Materials&Engineering, 2012, 41(8):1323-1326.
    [58] Chen H, Dawson J, Harding J. Effects of cationic substitution on structural defects in layered cathode materials LiNiO2[J]. Journalof Materials Chemistry A, 2014, 2(21):7988-7996.
    [59] Huang Z F, Zhang H Z, Wang C Z, et al. First-principlesinvestigation on extraction of lithium ion from monoclinic LiMnO2[J]. Solid State Sciences, 2010, 40(15):271-274.
    [60] Hoang K. First-principles theory of doping in layered oxideelectrode materials[J]. Phys. Rev. Materials, 2017, 1(7):075403.
    [61] Kim S, Hegde V I, Yao Z, et al. First-principles study of lithiumcobalt spinel oxides:correlating structure and electrochemistry[J].ACS Appl. Mater. Interfaces, 2018, 10(16):13479-13490.
    [62] Vallverdu G, Minvielle M, Andreu N, et al. First principle study ofthe surface reactivity of layered lithium oxides LiMO2(M=Ni,Mn, Co)[J]. Surface Science, 2016, 649:46-55.
    [63] Min K, Seo S W, Song Y Y, et al. A first-principles study of thepreventive effects of Al and Mg doping on the degradation inLiNi0.8Co0.1Mn0.1O2cathode materials[J]. Physical ChemistryChemical Physics, 2016, 19(3):1762.
    [64]王伟东,仇卫华,丁倩倩.锂离子电池三元材料[M].北京:化学工业出版社, 2015.Wang W D, Qiu W H, Ding Q Q. Lithium-ion Battery TernaryMaterials[M]. Beijing:Chemical Industry Press, 2015.
    [65]夏君磊,赵世玺.锂离子电池电极材料的设计方法及应用[J].材料导报, 2001, 15(9):33-35.Xia J L, Zhao S X. Design method and application of passiveelectrode material for Li-ion battery[J]. Material Review, 2001, 15(9):33-35.
    [66] Ullah S, Denis P A, Sato F. Beryllium doped graphene as anefficient anode material for lithium-ion batteries with significantlyhuge capacity:a DFT study[J]. Applied Materials Today, 2017, 9:333-340.
    [67] Momeni M J, Mousavi-Khoshdel M, Targholi E. First-principlesinvestigation of adsorption and diffusion of Li on doped silicenes:prospective materials for lithium-ion batteries[J]. MaterialsChemistry&Physics, 2017, 192:125-130.
    [68] Cui Y, Zhao Y, Chen H, et al. First-principles study of MoO3/graphene composite as cathode material for high-performancelithium-ion batteries[J]. Applied Surface Science, 2018, 433:1083-1093.
    [69] Chen H, Zhang W, Tang X Q, et al. First principles study of P-doped borophene as anode materials for lithium ion batteries[J].Applied Surface Science, 2018, 427:198-205.
    [70] Wang H, Wu M, Lei X, et al. Siligraphene as a promising anodematerial for lithium-ion batteries predicted from first-principlescalculations[J]. Nano Energy, 2018, 49:67-76.
    [71] Jiang H R, Zhao T S, Liu M, et al. Two-dimensional SiS as apotential anode material for lithium-based batteries:a first-principles study[J]. Journal of Power Sources, 2016, 331:391-399.
    [72] Cho E, Seo S W, Min K. Theoretical prediction of surface stabilityand morphology of LiNiO2cathode for Li ion battery[J]. ACSApplied Materials&Interfaces, 2017, 9(38):33257-33266.
    [73] Fan L, Zhuang H L, Gao L, et al. Regulating Li deposition atartificial solid electrolyte interphases[J]. Journal of MaterialsChemistry A, 2017, 5(7):3483-3492.
    [74] Vajeeston P. Ionic conductivity enhancement by particle sizereduction in Li2FeSiO4[J]. Materials Letters, 2018, 218:313-316.
    [75]龚鑫.第一性原理计算研究锂离子电池正极材料LiCoO2的热力学性能[D].南昌:江西师范大学, 2014.Gong X. First-principles calculation study of the thermodynamicproperties of LiCoO2cathode material for lithium ion batteries[D].Nanchang:Jiangxi Normal University, 2014.
    [76]刘兆君.锂离子电池电极材料中热力学和动力学问题的第一性原理研究[D].北京:中国科学院物理研究所, 2010.Liu Z J. First-principles study of thermodynamic and kineticproblems in lithium ion battery electrode materials[D]. Beijing:Institute of Physics Chinese Academy of Sciences, 2010.
    [77] Ali S, Rashid M, Hassan M, et al. Ab-initio study of electronic,magnetic and thermoelectric behaviors of LiV2O4, and LiCr2O4,using modified Becke-Johson(mBJ)potential[J]. Physica BCondensed Matter, 2018, 537:329-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700