水合铀酰与尿嘧啶及其异构体配位体系的计算研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Computational Study on the Coordination Systems of Hydrated Uranyl with Uracil Tautomers
  • 作者:牟永晓 ; 曹建平 ; 翁约约 ; 孙祥 ; 卫涛 ; 王朝杰
  • 英文作者:MOU Yong-Xiao;CAO Jian-Ping;WENG Yue-Yue;SUN Xiang;WEI Tao;WANG Chao-Jie;School of Pharmaceutical Sciences, Wenzhou Medical University;Department of Pharmacy, Wenzhou Central Hospital;Department of Pharmacy, the First Affiliated Hospital of Wenzhou Medical University;
  • 关键词:铀酰离子 ; 尿嘧啶异构体 ; 结合能 ; 溶剂化效应
  • 英文关键词:uranyl ion;;uracil tautomers;;binding energies;;electronic structures;;solvent effect
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:温州医科大学药学院;温州市中心医院药剂科;温州医科大学附属第一医院药学部;
  • 出版日期:2019-03-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(No.21177098,81703689);; 浙江省自然科学基金(No.LY16B070006)资助项目
  • 语种:中文;
  • 页:WJHX201903005
  • 页数:10
  • CN:03
  • ISSN:32-1185/O6
  • 分类号:45-54
摘要
运用B3LYP/6-311++G**(RLC ECP)方法研究[UO_2(Uracil)j(H_2O)k]~(2+)(Uijk,i为尿嘧啶6种异构体代号,j+k=5)配位体系的几何结构、振动光谱、结合能等性质,并用极化连续介质模型(PCM)考察了溶剂化效应。结果表明,在U1jk体系中,随着尿嘧啶配体数目的逐渐增加,U-Ouracil配位键和U=O键的键长逐渐伸长,水溶液中U=O键的伸缩振动频率逐渐减小,配离子的总结合能呈增加趋势,且气相中的线性拟合效果较好。在Ui14体系中,U-Ouracil的键长与U-OH_2的键长整体成负相关,与U=O键的伸缩振动频率成正相关,结合能最大的配离子并不是由能量最低的尿嘧啶异构体生成的。电子密度拓扑分析表明U-Ouracil键和U-OH_2键具有离子键性质。原子电荷分析揭示在配位过程中是由配体片段向铀酰发生了电子转移,且尿嘧啶的电荷转移量与该配体数目成负相关,其中Ur6异构体向铀酰离子转移电子数最多。
        The geometric structure, vibrational spectra and binding energies of [UO_2(Uracil)j(H_2 O)k]~(2+)(Uijk, i represents six kinds of uracil tautomers and j+k=5) have been studied by B3 LYP method with 6-311++G(d, p) and RLC ECP basis sets. The solvent effect of water was simulated by polarized continuum model. The results show that as the number of the uracil increases, the U-Ouracilbond and the U=O bond in coordination ions are elongated and the stretching vibrational frequencies of the U =O bond gradually decrease in the aqueous solution.Meanwhile, the total binding energies of the coordination ions obviously increase, and the calculation also shows a linear relationship between the binding energies and the number of uracil ligand. Besides, the affinity of uracil ligand for the uranyl ion far exceeds that of H_2 O ligand. The U-Ouracilbond lengths calculated in the gaseous phase are slightly shorter than those obtained in the aqueous phase, however, the lengths of the U-OH_2 bond show opposite behavior. In the Ui14 system, the bond length of U-Ouracilis negatively correlated with the bond length of U-OH_2, while is positively correlated with the vibrational frequency of U=O bond. The maximum binding energy of the coordination ion is evidently not formed by the lowest energy conformer of uracil. The topological analysis of electron density indicates that the coordination bond shows ionic character. Atomic charge analysis reveals that the charge transfer is from uracil to uranyl during the coordination process, and the amount of the uracil charge is inversely related with coordination number. The Ur6 tautomer possesses the most charge among six kinds of uracil tautomers because of forming bidentate complexation with uranyl.
引文
[1] ZHOU Dan(舟丹). Sino-Global Energy(中外能源), 2017,22(3):85
    [2] Platts J A, Baker R J. Phys. Chem. Chem. Phys., 2018,20:15380-15388
    [3] Pietro P D, Kerridge A. Inorg. Chem., 2016,55(2):573-583
    [4] WANG Hui(王会), CHAI Zhi-Fang(柴之芳), WANG DongQi(王东琪). Chinese J. Inorg. Chem.(无机化学学报), 2014,30(1):37-52
    [5] Garmash S A, Smirnova V S, Karp O E. J. Environ. Radioact.,2014,127:163-170
    [6] Danis J A, Lin M R, Scott B L, et al. Inorg. Chem., 2001,40(14):3389-3394
    [7] Zakharieva O, Kremleva A, Krüger S, et al. Int. J. Quantum Chem., 2011,111(9):2045-2053
    [8] Wu Q Y, Wang C Z, Lan J H, et al. RSC Adv., 2016,6(74):69773-69781
    [9] Ren Y M, Tang H, Shao L, et al. RSC Adv., 2016,6(52):46467-46474
    [10]Vukovic S, Watson L A, Kang S O, et al. Inorg. Chem.,2012,51(6):3855-3859
    [11]Mohamadi M, Ebrahimipour S Y, Castro J, et al. J. Photochem.Photobiol. B, 2016,158:219-227
    [12]Ebrahimipour S Y, Mohamadi M, Torkzadeh M M, et al.Eur. J. Med. Chem., 2017,140:172-186
    [13]Szabo Z, Furo I, Csoregh I. J. Am. Chem. Soc., 2005,127(43):15236-15247
    [14]García H M, Willnauer C, Krüger S, et al. Inorg. Chem.,2006,45(3):1356-1366
    [15]Arnold P L, Casely I J. Chem. Rev., 2009,109(8):3599-3611
    [16]CAO Guo-Jin(曹国进), Zheng Wei-Jun(郑卫军). Acta Phys.-Chim. Sin.(物理化学学报), 2013,29(10):2135-2147
    [17]Van H J D, Huang H C. Chem. Rev., 2006,250(7):765-775
    [18]Montavon G, Aposatolidis C, Bruchertseifer F, et al. J. Inorg.Biochem., 2009,103(12):1609-1616
    [19]Wittberger D, Berens C, Hammann C, et al. J. Mol. Biol.,2000,300(2):339-352
    [20]Schreckenbach G, Shamov G A. Acc. Chem. Res., 2010,43(1):19-29
    [21]Lucena A F, Odoh S O, Zhao J, et al. Inorg. Chem., 2014,53(4):2163-2170
    [22]Shamov G A, Schreckenbach G. Inorg. Chem., 2008,47(3):805-811
    [23]Odoh S O, Schreckenbach G. J. Phys. Chem. A, 2011,115(48):14110-14119
    [24]Garciahernandez M, Lauterbach C, Kruger S, et al. J. Comput.Chem., 2002,23(8):834-846
    [25]Dolg M, Cao X Y. Chem. Rev., 2012,112(1):403-480
    [26]Hay P J, Martin R L. J. Chem. Phys., 1998,109(10):3875-3881
    [27]Cheng C, Wang C Y, Huai P, et al. Procedia Chem., 2012,7:460-465
    [28]Ichetarrat N, Marsden C J. J. Phys. Chem. A, 2008,112(33):7632-7642
    [29]Odoh S O, Schreckenbach G. J. Phys. Chem. A, 2010,114(4):1957-1963
    [30]Devlin F J, Chabalowski C F, Frisch M J, et al. J. Phys.Chem., 1994,98(45):11623-11627
    [31]GU Jia-Fang(辜家芳), XU Ke(许可), CHEN Wen-Kai(陈文凯). Chinese J. Inorg. Chem.(无机化学学报), 2017,33(9):1579-1586
    [32]Grabias E, Majdan M. J. Radioanal. Nucl. Chem., 2017,313(2):455-465
    [33]Gezahegne W A, Hennig C, Tsushima S, et al. Environ. Sci.Technol., 2012,46(4):2228-2233
    [34]Sato C A, Carauta A N, Carneiro J W M. Spectrochim. Acta Part A, 2008,71(3):1140-1145
    [35]SUN Xiao-Ling(孙晓玲), HUANG Xu-Hui(黄旭慧), CAI Yue-Piao(蔡跃飘), et al. Journal of Nuclear and Radiochemistry(核化学与放射化学), 2013,35(5):303-310
    [36]Fuentealba P, Preuss H, Stoll H, et al. Chem. Phys. Lett.,1982,89:418-422
    [37]Bridgeman A J, Cavigliasso G, Ireland L R, et al. J. Chem.Soc. Dalton Trans., 2001,2001(14):2095-2108
    [38]Miertus S, Scrocco E, Tomasi J. Chem. Phys., 1981,55(1):117-129
    [39]Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian09,Gaussian, Inc., Wallingford CT, 2009.
    [40]Lu T, Chen F W. J. Comput. Chem., 2012,33(5):580-592
    [41]Hagberg D, Karlstrom G, Roos B O, et al. J. Am. Chem.Soc., 2006,37(2):14250-14256
    [42]GU Jia-Fang(辜家芳), LU Chun-Hai(陆春海), CHEN WenKai(陈文凯), et al. Acta Phys.-Chim. Sin.(物理化学学报),2012,28(4):792-798
    [43]Real F, Gomes A, Visscher S P L, et al. J. Phys. Chem. A,2009,113(45):12504-12511
    [44]Kerisit S, Liu C X. J. Phys. Chem. A, 2013,17(30):6421-6432
    [45]Aaberg M, Ferri D, Glaser J, et al. Inorg. Chem., 1983,22:3986-3989
    [46]GU Jia-Fang(辜家芳), MAN Mei-Ling(满梅玲), LU ChunHai(陆春海), et al. Chinese J. Inorg. Chem.(无机化学学报), 2012,28(7):1324-1332
    [47]GU Jia-Fang(辜家芳), LU Chun-Hai(陆春海), CHEN WenKai(陈文凯), et al. Acta Phys.-Chim. Sin.(物理化学学报),2009,25(4):655-660
    [48]WANG Han-Zhang(王汉章), CUI Li(崔丽), DAI Jie(戴洁),et al. Chinese J. Inorg. Chem.(无机化学学报), 1995,11(2):120-125
    [49]Odoh S O. Inorg. Chem., 2013,52(9):5590-5602
    [50]Kashinski D O, Chase G M, Nelson R G, et al. J. Phys. Chem.A, 2017,121(11):2265-2273
    [51]Toth L M, Begun G M. ChemInform, 1981,12(22):547-549
    [52]Pearson R G, Songstad J. J. Am. Chem. Soc., 1967,89(8):11223-11243
    [53]Spencer S, Gagliardi L, Handy N C, et al. J. Phys. Chem. A,1999,103(12):1831-1837
    [54]Bader R F W, Beddall P M. J. Chem. Phys., 1972,56:3320-3329
    [55]Lipkowski P, Grabowski S J, Robinson T L, et al. J. Phys.Chem. A, 2004,108(49):10865-10872

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700