天然酚类化合物对晚期糖基化末端产物抑制作用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Inhibitory Effect of Natural-derived Phenolic Compounds on Advanced Glycation End Products
  • 作者:范智义 ; 袁晓金 ; 贾本盼 ; 胡静 ; 曲婉婷 ; 赵劲松 ; 张迎晓 ; 李巨秀
  • 英文作者:Fan Zhiyi;Yuan Xiaojin;Jia Benpan;Hu Jing;Qu Wanting;Zhao Jinsong;Zhang Yingxiao;Li Juxiu;Northwest A&F University;
  • 关键词:天然酚类化合物 ; 晚期糖基化末端产物 ; 抑制 ; 机制
  • 英文关键词:phenolic compounds;;advanced glycation end products;;inhibition;;mechanism
  • 中文刊名:ZGSP
  • 英文刊名:Journal of Chinese Institute of Food Science and Technology
  • 机构:西北农林科技大学食品科学与工程学院;
  • 出版日期:2019-03-31
  • 出版单位:中国食品学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金面上项目(31471579)
  • 语种:中文;
  • 页:ZGSP201903057
  • 页数:11
  • CN:03
  • ISSN:11-4528/TS
  • 分类号:312-322
摘要
晚期糖基化末端产物(AGEs)是还原糖与氨基化合物通过美拉德反应(非酶糖基化)生成的一类物质。AGEs大量存在于热加工食品中,其在人体内的积累与多种疾病相关。天然酚类化合物是一种重要的膳食抗氧化剂,具有较强的抗糖基化能力,能够有效抑制AGEs的生成,近年来引起广泛的关注。本文通过总结国内外体外模拟反应体系的研究,探讨天然酚类化合物抑制AGEs生成的几种机制,旨在为天然酚类化合物抑制AGEs生成提供理论指导。天然酚类化合物主要通过其自由基清除能力、金属鳌合能力、羰基清除能力以及蛋白质结合能力抑制非酶糖基化反应。目前对于天然酚类化合物抑制AGEs的机制仍缺乏系统资料,对各机制的研究也亟待完善。由于酚类化合物安全无毒、来源广泛,因此在抑制AGEs在食品中的生成以及预防与治疗相关疾病等方面具有重要的研究价值。
        Advanced glycation end products(AGEs) is a class of compounds formed by reducing sugars and free amino groups through none-enzymatic Maillard reaction. AGEs ubiquitously exist in diet especially heat processed foods and their accumulation in human bodies linked with many pathological changes. As the most distributed dietary antioxidant, natural-derived phenolic compounds possess significant antiglycation activity, which indicates its potential value on the prevention of some relative diseases. This paper summarizes several mechanisms involved in the antiglycation process of phenolic compounds, which provides theoretical basis for its application on therapy and food industry. Abundant studies on simulated in vitro models revealed that phenolic compounds inhibit the formation of AGEs mainly through their radical scavenging activity, metal chelating activity, carbonyl trapping activity and protein binding activity. However, precise mechanisms involved in the antiglycation activity of phenolic compounds are somehow fragmentary and further researches are still needed to confirm the actual health effect in foods and biological systems.
引文
[1]URIBARRI J, WOODRUFF S, GOODMAN S, et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet[J].Journal of the American Dietetic Association, 2010,110(6):911-916.
    [2]TAKEUCHI M, BUCALA R, SUZUKI T, et al.Neurotoxicity of advanced glycation end-products for cultured cortical neurons[J]. Journal of Neuropatholo gy&Experimental Neurology, 2001, 59(12):1094-1105.
    [3]TAN K C B, SHIU S W M, YING W, et al. Serum advanced glycation end products(AGEs)are associated with insulin resistance[J]. Diabetes/metabolism Research&Reviews, 2011, 27(5):488-492.
    [4]BODIGA V L, EDA S R, BODIGA S. Advanced glycation end products:role in pathology of diabetic cardiomyopathy[J]. Heart Failure Reviews, 2013, 19(1):49-63.
    [5]FUKAMI K E I, UEDA S, YAMAGISHI S I, et al. AGEs activate mesangial TGF-β-Smad signaling via an angiotensin II type I receptor interaction[J].Kidney International, 2004, 66(6):2137-2147.
    [6]POULSEN M W, HEDEGAARD R V, ANDERSEN J M, et al. Advanced glycation endproducts in food and their effects on health[J]. Food&Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association,2013, 60(10):10-37.
    [7]BIERHAUS A, SCHIEKOFER S, SCHWANINGER M, et al. Diabetes-associated sustained activation of the transcription factor nuclear factor-kappa B[J].Diabetes, 2001, 50(12):2792-2808.
    [8]NAKAJIMA Y, INAGAKI Y, KIDO J, et al. Advanced glycation end products increase expression of S100A8 and A9 via RAGE-MAPK in rat dental pulp cells[J]. Oral Diseases, 2015, 21(3):328-234.
    [9]AHMED N. Advanced glycation endproducts-role in pathology of diabetic complications[J]. Diabetes Research&Clinical Practice, 2005, 67(1):3-21.
    [10]HE Y, CHEN S, LIU Z, et al. Toxicity of selenium nanoparticles in male Sprague-Dawley rats at supranutritional and nonlethal levels[J]. Life Sciences,2014, 115(1/2):44-51.
    [11]CHEYNIER V. Phenolic compounds:from plants to foods[J]. Phytochemistry Reviews, 2012, 11(2/3):153-177.
    [12]SOOBRATTEE M A, NEERGHEEN V S, LUXIMON-RAMMA A, et al. Phenolics as potential antioxidant therapeutic agents:Mechanism and actions[J]. Mutation Research/fundamental&Molecular Mechanisms of Mutagenesis, 2005, 579(1/2):200-213.
    [13]Institute of Medicine(US). Panel on dietary antioxidants and related compounds. dietary reference intakes for vitamin C, vitamin E, selenium, and carotenoids[M]. Washington D. C.:National Academies Press, 2000:154, 243.
    [14]KARIMI J, MOHAMMAD T G, TAVILANI H, et al. Myricetin inhibits advanced glycation end product(AGE)-induced migration of retinal pericytes through phosphorylation of ERK1/2, FAK-1, and paxillin in vitro and in vivo[J]. Biochemical Pharmacology, 2015, 93(4):496-505.
    [15]XIE W, WANG W, SU H, et al. Effect of ethanolic extracts of Ananas comosus L. leaves on insulin sensitivity in rats and HepG2[J]. Comparative Biochemistry&Physiology Part C Toxicology&Pharmacology, 2006, 143(4):429-435.
    [16]KUO C T, LIU T H, HSU T H, et al. Antioxidant and antiglycation properties of different solvent extracts from Chinese olive(Canarium album L.)fruit[J]. Asian Pacific Journal of Tropical Medicine,2015, 8(12):987-995.
    [17]GAENS K H, STEHOUWER C D, SCHALKWIJK C G. Advanced glycation endproducts and its receptor for advanced glycation endproducts in obesity[J].Current Opinion in Lipidology, 2013, 24(1):4-11.
    [18]GAENS, KATRIEN H J, STEHOUWER, et al. The Nε-(carboxymethyl)lysine-RAGE axis:putative implications for the pathogenesis of obesity-related complications[J]. Expert Review of Endocrinology&Metabolism, 2014, 5(5):839-854.
    [19]SMITH P R, THORNALLEY P J. Mechanism of the degradation of non-enzymatically glycated proteins under physiological conditions. Studies with the model fructosamine, N epsilon-(1-deoxy-D-fructos-1-yl)hippuryl-lysine[J]. European Journal of Biochemistry, 1992, 210(3):729-739.
    [20]MULLARKEY C J, EDELSTEIN D, BROWNLEE M. Free radical generation by early glycation products:A mechanism for accelerated atherogenesis in diabetes[J]. Biochemical&Biophysical Research Communications, 1990, 173(173):932-939.
    [21]SPITELLER G. Peroxyl radicals are essential reagents in the oxidation steps of the maillard reaction leading to generation of advanced glycation end products[J]. Annals of the New York Academy of Sciences, 2008, 1126(1):128-133.
    [22]WOLFF S P, CRABBE M J C, THORNALLEY P J. The autoxidation of glyceraldehyde and other sim ple monosaccharides[J]. Cellular&Molecular Life Sciences Cmls, 1984, 40(40):244-246.
    [23]AHMED M U, THORPE S R, BAYNES J W. Identification of N epsilon-carboxymethyllysine as a degradation product of fructoselysine in glycated protein[J]. Journal of Biological Chemistry, 1986, 261(11):4889-4894.
    [24]SAJITHLAL G B, CHITHRA P, CHANDRAKASAN G. Advanced glycation end products induce crosslinking of collagen in vitro[J]. Biochimica Et Biophysica Acta, 1998, 1407(3):215-224.
    [25]THILAVECH T, NGAMUKOTE S, ABEYWARDENA M, et al. Protective effects of cyanidin-3-rutinoside against monosaccharides-induced protein glycation and oxidation[J]. International Journal of Biological Macromolecules, 2015, 75(1):515-520.
    [26]HSIEH C L, LIN Y C, YEN G C, et al. Preventive effects of guava(Psidium guajava, L.)leaves and its active compounds againstα-dicarbonyl compounds-induced blood coagulation[J]. Food Chem istry, 2007, 103(2):528-535.
    [27]DAIPONMAK W, SENAKUN C, SIRIAMORNPUN S. Antiglycation capacity and antioxidant activities of different pigmented Thai rice[J]. International Journal of Food Science&Technology, 2014, 49(8):1805-1810.
    [28]QUIDEAU S, DEFFIEUX D, DOUAT‐CASASSUS C, et al. Plant polyphenols:chemical properties,biological activities, and synthesis[J]. Angewandte Chemie International Edition, 2011, 50(3):586-621.
    [29]RICE-EVANS C, MILLER N, PAGANGA G. Antioxidant properties of phenolic compounds[J]. Trends in Plant Science, 1997, 2(4):152-159.
    [30]WOLFF S P, DEAN R T. Glucose autoxidation and protein modification. The potential role of ‘autoxidative glycosylation’ in diabetes[J]. Biochemical Journal, 1987, 245(1):243-250.
    [31]KNIGHT J A, MCCLELLAN L. Metal-catalyzed peroxidation of polyunsaturated fatty acids[J]. Annals of Clinical&Laboratory Science, 1989, 19(5):377-382.
    [32]TRNKOVáL, DR?ATA J, BOU?OVáI. Oxidation as an important factor of protein damage:Implications for Maillard reaction[J]. Journal of Biosciences,2015, 40(2):419-439.
    [33]CHACE K V, CARUBELLI R, NORDQUIST R E.The role of nonenzymatic glycosylation, transition metals, and free radicals in the formation of collagen aggregates[J]. Archives of Biochemistry&Biophysics, 1991, 288(2):473-480.
    [34]MIRJANA A, JOHN V C, BRUNO D M, et al.Iron-chelation properties of phenolic acids bearing catechol and galloyl groups[J]. Food Chemistry, 2006,98(1):23-31.
    [35]KHOKHAR S, APENTEN R O. Iron binding characteristics of phenolic compounds:some tentative structure-activity relations[J]. Food Chemistry, 2003,81(1):133-140.
    [36]THUMMAJITASAKUL S, TUMCHALEE L, KOOLWONG S, et al. Antioxidant and antibacterial potentials of some Thai native plant extracts[J]. Zeitschrift Für?rztliche Fortbildung, 2014, 63(17):930-934.
    [37]El H H, NKHILI E, TOMAO V, et al. Interactions of quercetin with iron and copper ions:complexation and autoxidation[J]. Free Radical Research,2006, 40(3):303-320.
    [38]YIM M B, YIM H S, LEE C, et al. Protein glycation:creation of catalytic sites for free radical generation[J]. Annals of the New York Academy of Sciences, 2001, 928(1):48-53.
    [39]SOMPONG W, ADISAKWATTANA S. Inhibitory effect of herbal medicines and their trapping abilities against methylglyoxal-derived advanced glycation end-products[J]. Bmc Complementary&Alternative Medicine, 2015, 15(1):1-8.
    [40]MESíAS M, NAVARRO M, MARTíNEZ-SAEZ N,et al. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin[J].Food Research International, 2014, 62(62):1120-1126.
    [41]KIM J, JEONG I H, KIM C S, et al. Chlorogenic acid inhibits the formation of advanced glycation end products and associated protein cross-linking[J].Archives of Pharmacal Research, 2011, 34(3):495-500.
    [42]HARSHA P S C S, MESIAS M, LAVELLI V, et al. Grape skin extracts from winemaking by-products as a source of trapping agents for reactive carbonyl species[J]. Journal of the Science of Food&Agri culture, 2015, 96(2):656-663.
    [43]MESíAS M, NAVARRO M, G?KMEN V, et al.Antiglycative effect of fruit and vegetable seed extracts:inhibition of AGE formation and carbonyltrapping abilities[J]. Journal of the Science of Food&Agriculture, 2013, 93(8):2037-2044.
    [44]KOCADA?LI T,?ILI? S, TAS N G, et al. Formation ofα-dicarbonyl compounds in cookies made from wheat, hull-less barley and colored corn and its relation with phenolic compounds, free amino acids and sugars[J]. European Food Research&Technology, 2015, 242(1):51-60.
    [45]TOTLANI V M, PETERSON D G. Epicatechin car bonyl-trapping reactions in aqueous maillard systems:Identification and structural elucidation[J]. Journal of Agricultural&Food Chemistry, 2006, 54(19):7311-7318.
    [46]NAVARRO M, MORALES F J. Mechanism of reactive carbonyl species trapping by hydroxytyrosol un der simulated physiological conditions[J]. Food Chemistry, 2015, 175(1):92-99.
    [47]SHAO X, CHEN H, ZHU Y, et al. Essential structural requirements and additive effects for flavonoids to scavenge methylglyoxal[J]. Journal of Agricultural&Food Chemistry, 2014, 62(14):3202-3210.
    [48]ZHU Y, ZHAO Y, WANG P, et al. Bioactive ginger constituents alleviate protein glycation by trapping methylglyoxal[J]. Chemical Research in Toxicology, 2015, 28(9):1842-1849.
    [49]SAJITHLAL G B, CHITHRA P, CHANDRAKASAN G. An in vitro study on the role of metal catalyzed oxidation in glycation and crosslinking of collagen[J].Molecular&Cellular Biochemistry, 1999, 194(1/2):257-263.
    [50]SHAO X, BAI N K, HO C, et al. Apple polyphenols, phloretin and phloridzin:new trapping agents of reactive dicarbonyl species[J]. Chemical Research in Toxicology, 2008, 21(10):2042-2050.
    [51]RONDEAU P, BOURDON E. The glycation of albumin:Structural and functional impacts[J]. Biochimie,2011, 93(4):645-658.
    [52]LEDESMAOSUNA A I, RAMOSCLAMONT G,VáZQUEZMORENO L. Characterization of bovine serum albumin glycated with glucose, galactose and lactose[J]. Acta Biochimica Polonica, 2008, 55(3):491-497.
    [53]BHATTACHERJEE A, DATTA A. Mechanism of antiglycating properties of syringic and chlorogenic acids in in vitro glycation system[J]. Food Research International, 2015, 77(3):540-548.
    [54]KHAN M S, TABREZ S, RABBANI N, et al. Oxidative stress mediated cytotoxicity of glycated albumin:comparative analysis of glycation by glucose metabolites[J]. Journal of Fluorescence, 2015, 25(6):1721-1726.
    [55]IRAM A, ALAM T, KHAN J M, et al. Molten globule of hemoglobin proceeds into aggregates and advanced glycated end products[J]. Plos One, 2013,8(8):e72075-e72075.
    [56]KANG J, YUAN L, XIE M X, et al. Interactions of human serum albumin with chlorogenic acid and ferulic acid[J]. Biochimica Et Biophysica Acta, 2004,1674(2):205-214.
    [57]VLASSOPOULOS A, LEAN M E J, COMBET E.Inhibition of protein glycation by phenolic acids:physiological relevance and implication of proteinphenolic interactions[J]. Proceedings of the Nutrition Society, 2014, 74(OCE1):10711-10716.
    [58]SHI J H, WANG J, ZHU Y Y, et al. Characterization of intermolecular interaction between cyanidin-3-glucoside and bovine serum albumin:Spectroscopic and molecular docking methods[J]. Luminescence the Journal of Biological&Chemical Luminescence, 2014, 29(5):522-530.
    [59]THORNALLEY P J, LANGBORG A, MINHAS H S. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose[J]. Biochemical Journal, 1999, 344 Pt 1(1):109-116.
    [60]AHMED N. Advanced glycation endproducts-role in pathology of diabetic complications[J]. Diabetes Research&Clinical Practice, 2005, 67(1):3-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700