湿芝麻渣的干燥特性与特征参数研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Drying characteristics and characteristic parameters of fresh sesame residue
  • 作者:田朝玉 ; 王德武 ; 邓会宁 ; 刘燕 ; 张学玲 ; 张少峰
  • 英文作者:TIAN Zhaoyu;WANG Dewu;DENG Huining;LIU Yan;ZHANG Xueling;ZHANG Shaofeng;School of Chemical Engineering and Technology,Hebei University of Technology;
  • 关键词:芝麻渣 ; 干燥 ; 水分扩散系数 ; 活化能
  • 英文关键词:sesame residue;;drying;;moisture effective diffusivity;;activation energy
  • 中文刊名:ZYZZ
  • 英文刊名:China Oils and Fats
  • 机构:河北工业大学化工学院;
  • 出版日期:2019-07-17
  • 出版单位:中国油脂
  • 年:2019
  • 期:v.44;No.341
  • 语种:中文;
  • 页:ZYZZ201907008
  • 页数:4
  • CN:07
  • ISSN:61-1099/TS
  • 分类号:38-41
摘要
为了有效处理高含水率且黏度很大的湿芝麻渣,对不同温度条件下(50~120℃)湿芝麻渣的干燥特性以及干燥后芝麻渣氨基酸组成及含量的变化进行了研究。结果表明:干燥温度越高,有效水分扩散系数越大,干燥速率越快;温度从50℃升高到120℃,有效水分扩散系数从5. 47×10~(-10)m~2/s升高到4. 29×10~(-9)m~2/s,表观活化能为32. 84 kJ/mol,而且50℃和120℃两种温度下干燥后的芝麻渣氨基酸组成及含量并没有太大差异。通过扫描电镜观察芝麻渣的表面结构,发现120℃下干燥的芝麻渣比50℃下干燥的芝麻渣水通道更多,结构更疏松。
        In order to effectively deal with fresh sesame residue with high moisture content and viscosity,the effects of temperature (50-120 ℃) on drying characteristics of fresh sesame residue and amino acid composition and content of dry sesame residue were studied. The results showed that the higher the drying temperature,the greater the moisture effective diffusivity and the faster the drying rate. When the temperature increased from 50 ℃ to 120 ℃,the moisture effective diffusivity increased from 5. 47 × 10~(-10) m~2/s to 4. 29 × 10~(-9) m~2/s,the activation energy was 32. 84 kJ/mol,and the amino acid composition and content of dry sesame residue changed little at 50,120 ℃. The surface structure of sesame residue was observed by scanning electron microscope. It was found that the sesame residue dried at 120 ℃ had more water channels and looser structure than those at 50 ℃.
引文
[1]张振山.芝麻渣利用的研究现状及进展[J].中国调味品,2013,38(5):4-6,11.
    [2]李佳,徐慧,刘建军.香油加工副产物综合利用技术的研究进展[J].山东食品发酵,2015(1):11-14.
    [3]马学文,翁焕新.温度与颗粒大小对污泥干燥特性的影响[J].浙江大学学报(工学版),2009,43(9):1661-1667.
    [4]张振山,刘玉兰,汪学德,等.湿芝麻渣挤压膨化结粒干燥工艺条件研究[J].中国油脂,2013,38(8):4-7.
    [5]种翠娟,朱文学,刘云宏,等.胡萝卜薄层干燥动力学模型研究[J].食品科学,2014,35(9):24-29.
    [6]田俊青,马小涵,赵丹,等.响应面试验优化甘薯渣流化床干燥工艺[J].食品科学,2017,38(22):224-230.
    [7]刘坤,鲁周民,包蓉,等.红枣薄层干燥数学模型研究[J].食品科学,2011,32(15):80-83.
    [8]AKPINAR E K,BICER Y,YILDIZ C.Thin layer drying of red pepper[J].J Food Eng,2003,59(1):99-104.
    [9]李星琪,陈厚荣.蓝莓热风干燥特性及数学模型[J].农产品加工,2016(13):9-13,17.
    [10]邢朝宏,李进伟,金青哲,等.油茶籽的干燥特性及热风干燥模型的建立[J].中国粮油学报,2012,27(3):38-42.
    [11]吴起.基于傅里叶数法与优化法的污泥过热蒸汽干燥有效扩散系数研究[D].南昌:南昌航空大学,2015.
    [12]温祥东.污泥过热蒸汽与热风干燥收缩特性研究[D].南昌:南昌航空大学,2016.
    [13]胡庆国.毛豆热风与真空微波联合干燥过程研究[D].江苏无锡:江南大学,2006.
    [14]XIAO H W,GAO Z J,HAI L,et al.Air impingement drying characteristics and quality of carrot cubes[J].JFood Process Eng,2010,33(5):899-918.
    [15]巨浩羽,肖红伟,白竣文,等.苹果片的中短波红外干燥特性和色泽变化研究[J].农业机械学报,2013,44(S2):186-191.
    [16]XIAO H W,PANG C L,WANG L H,et al.Drying kinetics and quality of Monukka seedless grapes dried in an air-impingement jet dryer[J].Biosyst Eng,2010,105(2):233-240.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700