用户名: 密码: 验证码:
菠菜乙醇酸氧化酶的酶学特性及同工酶电泳分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Enzymatic Properties and Isozyme Electrophoresis of Spinach Glycolate Oxidase
  • 作者:罗莎 ; 黄璐瑶 ; 殷勤 ; 张钰莹 ; 赵燕 ; 张智胜
  • 英文作者:LUO Sha;HUANG Luyao;YIN Qin;ZHANG Yuying;ZHAO Yan;ZHANG Zhisheng;College of Bioscience and Biotechnology,Hunan Agricultural University;Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China,Hunan Agricultural University;College of Agriculture,Hunan Agricultural University;
  • 关键词:乙醇酸氧化 ; 酶学特性 ; 同工酶电泳 ; 菠菜
  • 英文关键词:Glycolate oxidase;;Enzymatic characteristics;;Isozyme electrophoresis;;Spinach
  • 中文刊名:HBNB
  • 英文刊名:Acta Agriculturae Boreali-Sinica
  • 机构:湖南农业大学生物科学技术学院;湖南农业大学南方粮油作物协同创新中心;湖南农业大学农学院;
  • 出版日期:2019-02-28
  • 出版单位:华北农学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(31600193);; 湖南省自然科学基金项目(2017JJ3109);; 湖南省教育厅科学研究项目(17B123);; 湖南农业大学人才科学基金项目(16QN22)
  • 语种:中文;
  • 页:HBNB201901025
  • 页数:9
  • CN:01
  • ISSN:13-1101/S
  • 分类号:160-168
摘要
为了解析菠菜乙醇酸氧化酶(Sp GLO)的酶学特性及同工酶谱。首先提取菠菜的RNA并反转录成c DNA,通过NCBI数据库中提供的菠菜GLO基因mRNA序列信息,设计特异性引物,扩增目标序列并连接到p MD19-T载体上进行测序鉴定;随后再次设计引物并在上游引物加入His标签,克隆Sp GLO基因构建到p YES2载体上,将该载体转入酿酒酵母中进行表达并通过His-tag亲和柱纯化,然后在不同诱导时间点取样测定Sp GLO酶活。结果显示,转化后的酿酒酵母菌株在诱导发酵20 h后能得到最高的GLO活性。以乙醇酸为底物测定Sp GLO在不同p H、不同温度条件下的催化活性,其最适p H值为8. 0,最适温度为39℃。然后分别以乙醇酸、乙醛酸、甘油酸为反应底物,系统分析了Sp GLO的酶学特性,数据显示,Sp GLO对乙醇酸的亲和力最高,其Km为0. 41 mmol/L,Vm为45. 92μmol/(min·mg)。以乙醇酸、乙醛酸为底物,使用草酸抑制其催化活性,其Ki分别为4. 61,2. 09 mmol/L,表明以乙醛酸为底物时Sp GLO的催化活性更易被草酸抑制。同时将纯化后的Sp GLO通过Caps-氨水电泳体系进行同工酶电泳,经过染色后出现2条同工酶带,表明菠菜叶片中可能存在2种GLO同工酶。为将来深入研究植物GLO同工酶之间的生化特性差异并分析其不同生理功能奠定良好的基础。
        The enzymatic properties of Spinacia oleracea glycolate oxidase( SpGLO) were studied in the paper. Firstly,the RNA of spinach was extracted and reversely transcribed into cDNA. Based on the mRNA sequence information of spinach GLO gene provided in NCBI database,the specific primers were designed,and the target sequences were cloned and connected to the pMD19-T vector for sequence identification. Then the primer was designed again and His label was added to the upstream primer,and SpGLO gene was cloned to build pYES2 vector.The SpGLO was heterologously expressed in Saccharomyces cerevisiae and purified by immobilized metal-affinity chromatography,and the enzyme activities were detected at different induction time. The results showed that the transformed S. cerevisiae strain presented the highest GLO activity after 20 hours of induction. The catalytic activities of SpGLO at different pHs and temperatures were determined by using glycolate as substrate,and the optimum pH was 8. 0 and the optimum temperature was 39 ℃. The enzymatic properties of SpGLO were analyzed with glycolate,glyoxylate and glycine as substrates respectively. Which showed that SpGLO displayed the highest affinity and activity with glycolate as substrate,and the Km of SpGLO for glycolate was 0. 41 mmol/L,and the Vm was 45. 92μmol/( min·mg). Oxalate could more strongly inhibit the glyoxylate-oxidizing activity of SpGLO,and the Ki values were 4. 61,2. 09 mmol/L,respectively. The purified SpGLO isozyme zymogram analysis was performed with a Caps-ammonium Clear Native-PAGE system,and two isozyme bands appeared after staining,indicating that there may be two GLO isozymes existed in spinach leaves. It provided a good foundation for future research on the biochemical difference between GLO isozyme in plant and the analysis of its physiological function.
引文
[1]张智胜,彭新湘.光呼吸的功能及其平衡调控[J].植物生理学报,2016,52(11):1692-1702. doi:10.13592/j. cnki. ppj. 2016. 1017.Zhang Z S,Peng X X. Multifunctional roles of photore-spiration and its regulation for the balance[J]. ActaPhytophysiologica Sinica,2016,52(11):1692-1702.doi:10. 13592/j. cnki. ppj. 2016. 1017.
    [2] Bloom A J. Photorespiration and nitrate assimilation:amajor intersection between plant carbon and nitrogen[J]. Photosynthesis Research,2015,123(2):117-128.doi:10. 1007/s11120-014-0056-y.
    [3] Bloom A J,Kameritsch P. Relative association of rubiscowith manganese and magnesium as a regulatory mecha-nism in plants[J]. Physiologia Plantarum,2017,161(4):545-559. doi:10. 1111/ppl. 12616.
    [4]张树伟,王霞,马燕斌,李换丽,韩渊怀,Rupert,Fray,吴霞,王新胜.植物光呼吸途径及其支路研究进展[J].山西农业大学学报(自然科学版),2016,36(12):885-889. doi:10. 13842/j. cnki. issn1671-8151. 2016. 12. 009.Zhang S W,Wang X,Ma Y B,Li H L,Han Y H,Ru-pert,Fray,Wu X,Wang X S. Research progress onphotorespiration and its bypass[J]. Journal of ShandongAgricultural University(Natural Science Edition),2016,36(12):885-889. doi:10. 13842/j. cnki. issn1671-8151. 2016. 12. 009.
    [5]郭玉朋.植物光呼吸途径研究进展[J].草业学报,2014, 23(4):322-329. doi:10. 11686/cyxb20140439.Guo Y P. A study on advances in plant photorespiration[J]. Acta Prataculturae Sinica,2014,23(4):322-329. doi:10. 11686/cyxb20140439.
    [6] Foyer C H,Bloom A J,Queval G,Noctor G. Photorespir-atory metabolism:genes,mutants,energetics,and redoxsignaling[J]. Annual Review of Plant Biology,2009,60(1):455-484. doi:10. 1146/annurev. arplant. 043008.091948.
    [7] Barak S,Nejidat A,Heimer Y,Volokita M. Transcrip-tional and posttranscriptional regulation of the glycolateoxidase gene in tobacco seedlings[J]. Plant MolecularBiology,2001,45(4):399-407.
    [8]汪义龙,张洁,夏莹萍,吴倩,梁建生.水稻乙醇酸氧化酶基因的克隆和表达分析[J].扬州大学学报(农业与生命科学版),2014,35(3):54-58. doi:10.16872/j. cnki. 1671-4652. 2014. 03. 012.Wang Y L,Zhang J,Xia Y P,Wu Q,Liang J S. Clo-ning and expression analysis of glycolate oxidase gene inOryza sativa[J]. Journal of Yangzhou University(Agri-cultural and Life Science Edition),2014,35(3):54-58. doi:10. 16872/j. cnki. 1671-4652. 2014. 03. 012.
    [9]赵利,陈桂信,潘东明,王玉珍,吕恃衡,姜翠翠.叶片乙醇酸氧化酶基因全长c DNA的分离与表达研究[J].江西农业大学学报,2014,36(5):965-970.doi:10. 13836/j. jjau. 2014154.Zhao L,Chen G X,Pan D M,Wang Y Z,LüS H,JiangC C. Isolation of full-length c DNA of GLO from Pranussalicina leaf and its expression[J]. Acta AgriculturaeUniversitatis Jiangxiensis(Natural Sciences Edition),2014,36(5):965-970. doi:10. 13836/j. jjau.2014154.
    [10] Hodges M,Dellero Y,Keech O,Betti M,RaghavendraA S,Sage R,Zhu X G,Allen D K,Weber A P. Per-spectives for a better understanding of the metabolic in-tegration of photorespiration within a complex plant pri-mary metabolism network[J]. Journal of ExperimentalBotany,2016,67(10):3015-3026. doi:10. 1093/jxb/erw145.
    [11] Lu Y,Li Y,Yang Q,Zhang Z,Chen Y,Zhang S,Peng X X. Suppression of glycolate oxidase causes glyox-ylate accumulation that inhibits photosynthesis throughdeactivating Rubisco in rice[J]. Physiologia Plantarum,2014,150(3):463-476. doi:10. 1111/ppl. 12104.
    [12] Cui L L,Lu Y S,Li Y,Yang C,Peng X X. Overex-pression of glycolate oxidase confers improved photosyn-thesis under high light and high temperature in rice[J].Frontiers in Plant Science,2016,7:1165. doi:10. 3389/fpls. 2016. 01165.
    [13] Voss I,Sunil B,Scheibe R,Raghavendra A S. Emer-ging concept for the role of photorespiration as an impor-tant part of abiotic stress response[J]. Plant Biology,2013,15(4,SI):713-722. doi:10. 1111/j. 1438-8677. 2012. 00710. x.
    [14]程汉,陈相,黄华孙.巴西橡胶树乙醇酸氧化酶Hb-GOX1基因的鉴定与表达分析[J].热带农业科学,2016,36(8):19-25. doi:10. 12008/j. issn. 1009-2196. 2016. 08. 005.Cheng H,Chen X,Huang H S. Identification and ex-pression of glycolate oxidase Hb GOX1 gene from Heveabrasiliensis[J]. Chinese Journal of Tropical Agriculture,2016,36(8):19-25. doi:10. 12008/j. issn. 1009-2196. 2016. 08. 005.
    [15]敬志豪.水分亏缺对不同抗旱性小麦穗部光呼吸特性的影响[D].杨凌:西北农林科技大学,2015.Jing Z H. Photorespiron performance of ear oganss indiffrent drought ressistance wheats under water deficit[D]. Yangling:Northwest A&F University,2015.
    [16] Mukherjee S P,Choudhuri M A. Implications of waterstress-induced changes in the levels of endogenous as-corbic acid and hydrogen peroxide in vigna seedlings[J]. Physiologia Plantarum,1983,58(2):1399-3054.doi:10. 1111/j. 1399-3054. 1983. tb04162. x.
    [17] Mittler R,Zilinskas B A. Regulation of pea cytosolic a-scorbate peroxidase and other antioxidant enzymes duringthe progression of drought stress and following recoveryfrom drought[J]. The Plant Journal,1994,5(3):397-405.
    [18] Rizhsky L,Liang H,Mittler R. The combined effect ofdrought stress and heat shock on gene expression in to-bacco[J]. Plant Physiology,2002,130(3):1143-1151. doi:10. 1104/pp. 006858.
    [19] Schafer P,Hückelhoven R,Kogel K H. The white bar-ley mutant albostrians shows a supersusceptible butsymptomless interaction phenotype with the hemibiotro-phic fungus Bipolaris sorokiniana[J]. Molecular Plant-microbe Interactions,2004,17(4):366-373. doi:10.1094/MPMI. 2004. 17. 4. 366.
    [20] Maksimov I V,Yarullina L G,Surina O B. The effect ofexogenous phytohormones on resistance of wheat callusesto(D. C.)Tul.&C. Tul[J]. American Journal of PlantSciences,2014,5(12):1745-1754. doi:10. 4236/ajps.
    [21] Rojas C,Mysore K S. Glycolate oxidase is an alternativesource for H2O2production during plant defense respon-ses and functions independently from NADPH oxidase[J]. Plant Signaling&Behavior,2012,7(7):752-755. doi:10. 4161/psb. 20429.
    [22] Noctor G,Veljovic-Jovanovic S,Driscoll S,NovitskayaL,Foyer C H. Drought and oxidative load in the leavesof C3 plants:a predominant role for photorespiration?[J]. Annals of Botany,2002,89(7):841-850.
    [23] Sandalio L M,Rodríguez-Serrano M,Romero-Puertas MC,del Río L A. Role of peroxisomes as a source of re-active oxygen species(ROS)signaling molecules[J].Sub-cellular Biochemistry,2013,69:231-255. doi:10. 1007/978-94-007-6889-5_13.
    [24] Baxter A,Mittler R,Suzuki N. ROS as key players inplant stress signalling[J]. Journal of Experimental Bota-ny,2014,65(5):1229-1240. doi:10. 1093/jxb/ert375.
    [25] Zhang Z,Xu Y,Xie Z,Li X,He Z H,Peng X X. As-sociation-Dissociation of glycolate oxidase with catalasein rice:a potential Switch to modulate intracellularH2O2 levels[J]. Molecular Plant,2016,9(5):737-748. doi:10. 1016/j. molp. 2016. 02. 002.
    [26] Zelitch I S,Reduction O G,Glyoxylic A I. Glycolicacid oxidase[J]. Journal of Biological Chemistry,1953,201(2):707-718.
    [27] Cederlund E,Lindqvist Y,Soderlund G,Brandén C I,Jornvall H. Primary structure of glycolate oxidase fromspinach[J]. European Journal of Biochemistry,1988,173(3):523-530.
    [28]张建国,杨洁.生物法合成乙醛酸[J].微生物学杂志,2003,23(3):32-34,38.Zhang J G,Yang J. The production of glyoxylic acid u-sing microbial methods[J]. Journal of Microbiology,2003,23(3):32-34,38.
    [29]马宁,朱康佳,毛银,邓禹.代谢工程改造大肠杆菌提高乙醇酸产率[J].生物工程学报,2018,34(2):224-235. doi:10. 13345/j. cjb. 170209.Ma N,Zhu K J,Mao Y,Deng Y. Improving glycolicacid yield by metabolic engineering in Escherichia coli[J]. Chinese Journal of Biotechnology,2018,34(2):224-235. doi:10. 13345/j. cjb. 170209.
    [30] Jin J,Tan T,Wang H,Su G. The expression of spinachglycolate oxidase(GO)in E. coli and the application ofGO in the production of glyoxylic acid[J]. Molecular Bi-otechnology,2003,25(3):207-214. doi:10. 1385/MB:25:3:207.
    [31]徐杰,吴燕燕.菠菜叶片中乙醇酸氧化酶3种同工酶的生化特性[J].中国生物化学与分子生物学报,2001,17(4):537-540. doi:10. 13865/j. cnki. cjb-mb. 2001. 04. 031.Xu J,Wu Y Y. Biochemical properties of glycolate oxi-dase isozymes of Spinacia oleracea[J]. Chinese Journalof Biochemistry and Molecular Biology,2001,17(4):537-540. doi:10. 13865/j. cnki. cjbmb. 2001. 04.031.
    [32]张晓丽,代红军.植物RNA提取方法的研究进展[J].北方园艺,2014(8):175-178.Zhang X L,Dai H J. Research progress on extractionmethod of plant RNA[J]. Northern Horticulture,2014(8):175-178.
    [33]付占成,李艳,赵红星.植物总RNA提取研究进展[J].现代农业科技,2014,(18):168,173. doi:10.3969/j. issn. 1007-5739. 2014. 18. 108.Fu Z C,Li Y,Zhao H X. Research progress of isolationof plant total RNA[J]. Xian Dai Nong Ye Ke Ji,2014(18):168,173. doi:10. 3969/j. issn. 1007-5739.2014. 18. 108.
    [34]陈心语.改良TRIzol试剂法提取番茄成熟叶总RNA探究[J].南方农业,2018,(2):104-104. doi:10.19415/j. cnki. 1673-890x. 2018. 02. 056.Chen X Y. Extraction of Total RNA from Lycopersiconesculentum Mill with Improved TRIzol Method[J].South China Agriculture,2018,(2):104-104. doi:10. 19415/j. cnki. 1673-890x. 2018. 02. 056.
    [35] Gietz D,St Jean A,Woods R A,Schiestl R H. Im-proved method for high efficiency transformation of in-tact yeast cells[J]. Nucleic Acids Research,1992,20(6):1425.
    [36] Gietz R D,Woods R A. Yeast transformation by the Li-Ac/SS Carrier DNA/PEG method[J]. Methods in Mo-lecular Biology,2006,313:107-120. doi:10. 1385/1-59259-958-3:107.
    [37]彭新湘,李明启.乙醇酸氧化酶的纯化结晶和酪氨酸残基的修饰对酶活性的影响[J].植物生理学报,1989,15(3):257-262.Peng X X,Li M Q. Purification and crystallization ofglycolate oxidase and effect of modification of tyrosioneresidue on its activity[J]. Acta Phytophysiologica Sini-ca,1989,15(3):257-262.
    [38] Lineweaver H,Burk D. The determination of enzymedissociation constants[J]. Journal of the AmericanChemical Society,1934,56(3):658-666. doi:10.1021/ja01318a036.
    [39]赵文婷,狄斌. FLT3抑制剂CHMFL-FLT3-122解离常数的测定[J].中国现代应用药学,2017,34(7):1002-1006. doi:10. 13748/j. cnki. issn1007-7693.2017. 07. 015.Zhao W T,Di B. Determination of dissociation con-stants of FLT3 inhibitor CHMFL-FLT3-122[J]. Chi-nese Journal of Modern Applied Pharmacy,2017,34(7):1002-1006. doi:10. 13748/j. cnki. issn1007-7693. 2017. 07. 015.
    [40] Mclellan T. Electrophoresis buffers for polyacrylamidegels at various p H[J]. Analytical Biochemistry,1982,126(1):94-99. doi:10.1016/0003-2697(82)90113-0.
    [41]蒋大程,高珊,高海伦,邱念伟.考马斯亮蓝法测定蛋白质含量中的细节问题[J].实验科学与技术,2018,16(3):1672-4550. doi:10. 3969/j. issn. 1672-4550. 2018. 03. 031.Jiang D C,Gao S,Gao H L,Qiu N W. The details ofprotein content determination by coomassie brilliant bluestaining[J]. Experiment Science and Technology,2018,16(3):1672-4550. doi:10. 3969/j. issn. 1672-4550. 2018. 03. 031.
    [42]赵卓,嵇雅茹,籍浩天,赵海荣,郝锡联.温度对考马斯亮蓝法测定蛋白质浓度的影响[J].安徽农业科学,2015,43(4):5-7,36. doi:10. 16175/j. cnki.1009-4229. 2015. 02. 004.Zhao Z,Ji Y R,Ji H T,Zhao H R,Hao X L. Effectsof temperature on determination of protein concentrationwith coomassie brilliant blue method[J]. Journal ofAnhui Agricultural Science,2015,43(4):5-7,36.doi:10. 16175/j. cnki. 1009-4229. 2015. 02. 004.
    [43]赵卓,籍浩天,刘东波,嵇雅茹,郝锡联.光照对考马斯亮蓝法测定蛋白质浓度影响的研究[J].吉林师范大学学报(自然科学版),2015(2):112-116.doi:10. 16862/j. cnki. issn1674-3873. 2015. 02. 026.Zhao Z,Ji H T,Liu D B,Ji Y R,Hao X L. Lighteffect on the determination of protein concentration bycoomassie brilliant blue method[J]. Jilin Normal Univer-sity Journal(Natural Science Edition),2015(2):112-116. doi:10. 16862/j. cnki. issn1674-3873. 2015. 02. 026.
    [44]蔡晓锋,徐晨曦,王小丽,葛晨辉,王全华.植物中的草酸:合成、降解及其积累调控[J].植物生理学报,2015,51(3):267-272. doi:10. 13592/j. cnki.ppj. 2014. 0526.Cai X F,Xu C X,Wang X L,Ge C H,Wang Q H.The oxalic acid in plants:biosynthesis,degradation andits accumulation regulation[J]. Acta PhytophysiologicaSinica,2015,51(3):267-272. doi:10. 13592/j.cnki. ppj. 2014. 0526.
    [45]陆育生.水稻乙醇酸氧化酶的分子调控与功能研究[D].广州:华南农业大学,2012.Lu Y S. Molecular regulation and functional analysis ofglycolate oxidase in rice[D]. Guangzhou:South ChinaAgricultural University,2012
    [46] Wittig I,Schagger H. Native electrophoretic techniquesto identify protein-protein interactions[J]. Proteomics,2009,9(23):5214-5223. doi:10. 1002/pmic.200900151.
    [47] Laemmli U K. Cleavage of structural proteins during theassembly of the head of bacteriophage T4[J]. Nature,1970,227(5259):680-685. doi:10. 1038/227680a0.
    [48] Boer E,Steinborn G,Kunze G,Gellissen G. Yeast ex-pression platforms[J]. Applied Microbiology and Bio-technology,2007,77(3):513-523. doi:10. 1007/s00253-007-1209-0.
    [49] Graslund S,Nordlund P,Weigelt J,Hallberg B M,Bray J,Gileadi O,Knapp S,Oppermann U,Arrow-smith C,Hui R,Ming J,Dhe-Paganon S,Park H W,Savchenko A,Yee A,Edwards A,Vincentelli R,Cam-billau C,Kim R,Kim S H,Rao Z,Shi Y,TerwilligerT C,Kim C Y,Hung L W,Waldo G S,Peleg Y,Al-beck S,Unger T,Dym O,Prilusky J,Sussman J L,Stevens R C,Lesley S A,Wilson I A,Joachimiak A,Collart F,Dementieva I,Donnelly M I,Eschenfeldt WH,Kim Y,Stols L,Wu R,Zhou M,Burley S K,Emtage J S,Sauder J M,Thompson D,Bain K,Luz J,Gheyi T,Zhang F,Atwell S,Almo S C,Bonanno J B,Fiser A,Swaminathan S,Studier F W,Chance M R,Sali A,Acton T B,Xiao R,Zhao L,Ma L C,Hunt JF,Tong L,Cunningham K,Inouye M,Anderson S,Janjua H,Shastry R,Ho C K,Wang D,Wang H,Jiang M,Montelione G T,Stuart D I,Owens R J,Daenke S,Schutz A,Heinemann U,Yokoyama S,Bus-sow K,Gunsalus,C K. Protein production and purifica-tion[J]. Nature Methods,2008,5(2):135-146. doi:10. 1038/nmeth. f. 202.
    [50] Li X X,Franceschi V R. Distribution of peroxisomes andglycolate metabolism in relation to calcium oxalate for-mation in Lemna minor L.[J]. European Journal of CellBiology,1990,51(1):9-16.
    [51] Dutta C,Avitahl-Curtis N,Pursell N,Larsson CohenM,Holmes B,Diwanji R,Zhou W,Apponi L,KoserM,Ying B,Chen D,Shui X,Saxena U,Cyr W A,Shah A,Nazef N,Wang W,Abrams M,Dudek H,Sal-ido E,Brown B D,Lai C. Inhibition of glycolate oxi-dase with dicer-substrate siRNA reduces calcium oxalatedeposition in a mouse model of primary hyperoxaluriatype 1[J]. Molecular Therapy:the Journal of the Amer-ican Society of Gene Therapy,2016,24(4):770-778.doi:10. 1038/mt. 2016. 4.
    [52] Xu H,Zhang J,Zeng J,Jiang L,Liu E,Peng C,HeZ,Peng X. Inducible antisense suppression of glycolateoxidase reveals its strong regulation over photosynthesisin rice[J]. Journal of Experimental Botany,2009,60(6):1799-1809. doi:10. 1093/jxb/erp056.
    [53]徐杰.菠菜中的乙醇酸氧化酶是一个同工酶[J].中国生物化学与分子生物学报,1998,14(6):160-164. doi:10. 13865/j. cnki. cjbmb. 1998. 06. 031.Xu J. Glycolate oxidase is an isozyme[J]. ChineseJournal of Biochemistry and Molecular Biology,1998,14(6):160-164. doi:10. 13865/j. cnki. cjbmb. 1998.06. 031.
    [54] Lindqvist Y. Refined structure of spinach glycolate oxi-dase at 2 A resolution[J]. Journal of Molecular Biology,1989,209(1):151-166.
    [55] M'rah S. Ouerghi Z,Berthomieu C,Havaux M,Jungas C,Hajji M,Grignon C,Lachal M. Effects of Na Cl on thegrowth,ion accumulation and photosynthetic parametersof Thellungiella halophila[J]. Journal of Plant Physiolo-gy,2005,163(10):1022-1031. doi:10. 1016/j. jpl-ph. 2005. 07. 015.
    [56] Odanaka S,Bennett A B,Kanayama Y. Distinct physio-logical roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in to-mato[J]. Plant Physiology,2002,129(3):1119-1126.doi:10. 1104/pp. 000703.
    [57] Mittler R,Vanderauwera S,Gollery M,Van BreusegemF. Reactive oxygen gene network of plants[J]. Trends inPlant Science,2004,9(10):490-498. doi:10. 1016/j.tplants. 2004. 08. 009.
    [58]胡杰.草酸氧化酶基因(Ox O)遗传转化拟南芥及其抗病机理的初步分析[D].郑州:郑州大学,2014.Hu J. Expressing a gene encoding oxalate oxidase showsan involvement of antioxidant enzymes and higher accu-mulation of nonenzymatic antioxidant in Arabidopsisthaliana[D]. Zhengzhou:Zhengzhou University,2014.
    [59] Sabater B,Martín M. Hypothesis:increase of the ratiosinglet oxygen plus superoxide radical to hydrogen perox-ide changes stress defense response to programmed leafdeath[J]. Frontiers in Plant Science,2013,4(2):479.doi:10. 3389/fpls. 2013. 00479.
    [60]钱宝云.内源H2O2和Ca2+参与高表达转玉米C4-pepc基因水稻耐旱性调节[D].南京:南京农业大学,2014.Qian B Y. Regulation of drought tolerance via endoge-nous H2O2and Ca2+in transgenic rice with overexpess-ing C4-pepc from maize[D]. Nanjing:Nanjing Agricul-tural University,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700