酸浸—生物浸出工艺从废锂离子电池电极材料中回收金属钴铜镍
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recovery of Copper,Cobalt and Nickel From Spent Lithium Ion Batteries by a Combined Process of Acid Leaching and Bioleaching
  • 作者:张颢竞 ; 程洁红 ; 朱铖 ; 杨嘉 ; 顾铭
  • 英文作者:ZHANG Haojing;CHENG Jiehong;ZHU Cheng;YANG Jia;GU Ming;School of Chemical and Environmental Engineering,Jiangsu University of Technology;
  • 关键词:废锂离子电池 ; 金属 ; 回收 ; 氧化亚铁硫杆菌 ; 生物浸出 ; 酸浸
  • 英文关键词:spent lithium ion battery;;metal;;recycling;;thiobacillus ferrooxidans;;bioleaching;;acid leaching
  • 中文刊名:SFYJ
  • 英文刊名:Hydrometallurgy of China
  • 机构:江苏理工学院化学与环境工程学院;
  • 出版日期:2019-01-03 14:23
  • 出版单位:湿法冶金
  • 年:2019
  • 期:v.38;No.163
  • 基金:江苏省高校自然科学研究重大项目(15KJA610001);; 江苏省研究生科研与实践创新计划项目(SJCX17_0782)
  • 语种:中文;
  • 页:SFYJ201901006
  • 页数:6
  • CN:01
  • ISSN:11-3012/TF
  • 分类号:26-31
摘要
研究了采用长期筛选驯化得到的一株金属耐受能力较强的氧化亚铁硫杆菌(T.f.)ESY06,以酸浸—生物浸出工艺从废锂离子电池电极材料中回收铜、钴、镍,考察了Fe2+质量浓度对ESY06生长的影响。结果表明:ESY06同时对铜、钴、镍的耐受能力分别为1.22、2.21、0.29g/L;Fe2+质量浓度为20g/L时,ESY06生长状况最好;采用酸浸—生物浸出工艺处理废锂离子电池正极材料,钴、镍浸出率分别为99.93%、99.46%,负极材料中的铜浸出率为99.78%,混合电极材料中的铜、钴、镍浸出率分别为99.88%、99.39%、99.55%。酸浸—生物浸出工艺对铜、钴、镍金属回收效果较好,对于从电池电极材料中回收有价金属有一定优势。
        A bacterial strain ESY06 with the properties of high efficiency and high tolerant metals,identified as Thiobacillus ferrooxidans(T.f.),was obtained by isolating and long term cultivating.The bioleaching of the copper,cobalt and nickel in spent lithium ion batteries using strain ESY06 were investigated.And the effect of Fe2+concentration on the growth of a strain ESY06 was examined.The results show that the tolerant ability of the strain ESY06 to copper,cobalt and nickel are respectively1.22、2.21 and 0.29g/L.Under the condition of Fe2+concentration of 20g/L,the growth of the strain ESY06 is the best.The leaching rate of cobalt and nickel in positive electrode can reach 99.93% and99.46%,respectively,and the leaching rate of copper in negative electrode is 99.78%.For the mixed electrodes,the leaching rate of copper,cobalt and nickel are 99.88%,99.39%and 99.55%,respectively.The combined process of acid leaching pre-treated and bioleaching has good effect on leaching of copper,cobalt and nickel,and can recovery the valuable metals in battery electrode materials.
引文
[1] XIAO S,REN G,XIE M,et al.Recovery of valuable metals from spent lithium-ion batteries by smelting reduction process based on MnO-SiO2-Al2O3,slag system[J].Journal of Sustainable Metallurgy,2017,27(2):1-8.
    [2]陈欢,张银亮,谭群英,等.从废旧电池正极材料低酸浸出渣中高压酸浸钴镍锰锂试验研究[J].湿法冶金,2018,37(5):388-392.
    [3] ZENG Xianlai,LI Jinhui,SINGH Narendra.Recycling of spent lithium-ion battery:a critical review[J].Critical Reviews in Environmental Science&Technology,2014,44(10):1129-1165.
    [4] RASTEGAR S O,MOUSAVI S M,SHOJAOSADATI S A.Cr and Ni recovery during bioleaching of dewatered metal-plating sludge using acidithiobacillus ferrooxidans[J].Bioresource Technology,2014,167(C):61-68.
    [5] BAYAT B,SARI B.Bioleaching of dewatered metal plating sludge by Acidithiobacillus ferrooxidans using shake flask and completely mixed batch reactor[J].African Journal of Biotechnology,2015,9(44):7504-7512.
    [6]赵国华,高顺芝,罗兴章.氧化亚铁硫杆菌对电子垃圾焚烧迹地重金属形态的影响[J].环境工程学报,2014,8(1):347-352.
    [7] KARWOWSKA E,ANDRZEJEWSKA-MORZUCH D,TABERNACKA A,et al.Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria[J].Journal of Hazardous Materials,2014,264(2):203-210.
    [8]LIANG G,LI P,LIU W P,et al.Enhanced bioleaching efficiency of copper from waste printed circuit boards(PCBs)by dissolved oxygen-shifted strategy in Acidithiobacillus ferrooxidans[J].Journal of Material Cycles&Waste Management,2016,18(4):742-751.
    [9] PARK J,HAN Y,LEE E,et al.Bioleaching of highly concentrated arsenic mine tailings by Acidithiobacillus ferrooxidans[J].Separation&Purification Technology,2014,133:291-296.
    [10] LIU Hongchang,XIA Jinlan,NIE Zhenyuan.Relatedness of Cu and Fe speciation to chalcopyrite bioleaching by Acidithiobacillus ferrooxidans[J].Hydrometallurgy,2015,156:40-46.
    [11]郭丽萍,杜小弟,方伟,等.Na2S2O3还原溶解LiCoO2及钴、锂分离回收[J].应用化学,2006,23(10):1182-1184.
    [12]高丹,傅金祥,王英刚.氧化亚铁硫杆菌生长测定方法研究[J].沈阳大学学报(自然科学版),2007,19(2):66-68.
    [13]杨期勇,邱秀文,程鹏飞,等.嗜酸性氧化硫硫杆菌的分离鉴定及其产酸特性[J].生态环境学报,2015,24(8):1366-1374.
    [14]张军,肖潇,王敦球,等.一株嗜酸氧化亚铁硫杆菌的分离及沥滤效果研究[J].环境污染与防治,2014,36(3):1-7.
    [15]辛宝平,朱庆荣,李是珅,等.生物淋滤溶出废旧锂离子电池中钴的研究[J].北京理工大学学报,2007,27(6):551-555.
    [16]谢鑫源,孙培德,楼菊青,等.模拟电镀污泥重金属浸出液对氧化亚铁硫杆菌活性的影响[J].环境科学,2013,34(1):209-216.
    [17] YU Runlan,LIU jing,TAN Jianxi,et al.Effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans during chalcopyrite bioleaching[J].International Journal of Minerals Metallurgy and Materials,2014,21(4):311-316.
    [18] MODAK J M,NATARAJAN K A,MUKHOPADHYAY S.Development of temperature-tolerant strains of Thiobacillus ferrooxidans to improve bioleaching kinetics[J].Hydrometallurgy,1996,42(1):51-61.
    [19] SMITH S R.A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge[J].Environment International,2009,35(1):142-156.
    [20]徐颖,谢志钢,薛璐,等.氧化亚铁硫杆菌淋滤重金属污染底泥的动力学[J].中国有色金属学报,2014,24(5):1352-1358.
    [21] XIN B,ZHANG D,ZHANG X,et al.Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria[J].Bioresource Technology,2009,100(24):6163-6169.
    [22] MARCINCKOVR,KADUKOVJ,MRAZKOVA,et al.Metal bioleaching from spent lithium-ion batteries using acidophilic bacterial strains[J].Inzynieria Mineralna,2016,17(1):117-120.
    [23] YANG Yuankun,CHEN Shu,LI Shicheng,et al.Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect[J].Journal of Biotechnology,2014,173(6):24-30.
    [24]邓孝荣,曾桂生,罗胜联,等.氧化亚铁硫杆菌浸出废旧锂离子电池中钴酸锂的电化学行为[J].中南大学学报(自然科学版),2012,43(7):47-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700