“背包式”反应精馏生产乙酸环己酯工艺的模拟研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation of “Backpack” reactive distillation process for the production of cyclohexyl acetate
  • 作者:许戈 ; 汤吉海 ; 陈献 ; 崔咪芬 ; 费兆阳 ; 乔旭
  • 英文作者:Xu Ge;Tang Jihai;Chen Xian;Cui Mifen;Fei Zhaoyang;Qiao Xu;College of Chemical Engineering,Nanjing Tech University;Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM);State Key Laboratory of Materials-Oriented Chemical Engineering,Nanjing Tech University;
  • 关键词:反应精馏 ; 侧反应器 ; 酯化 ; 模拟 ; 乙酸环己酯
  • 英文关键词:reactive distillation;;side reactor;;esterification;;simulation;;cyclohexyl acetate
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:南京工业大学化工学院;国家"江苏先进生物与化学制造协同创新中心";南京工业大学材料化学工程国家重点实验室;
  • 出版日期:2017-01-15
  • 出版单位:石油化工
  • 年:2017
  • 期:v.46
  • 基金:国家自然科学基金项目(21276126,61203020);; 江苏省“六大人才高峰”项目(2015-XCL-017);; 江苏高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:SYHG201701011
  • 页数:6
  • CN:01
  • ISSN:11-2361/TQ
  • 分类号:54-59
摘要
采用"背包式"反应精馏集成(DCSR)工艺,对环己烯(CH)与乙酸(AA)加成酯化合成乙酸环己酯(CA)的反应进行研究,固定CH与AA的进料量均为10 kmol/h,规定塔釜产品中CA含量为99.5%(w),以年度总成本(TAC)为评价指标,通过Aspen Plus流程模拟软件考察了主要操作条件及集成结构对DCSR过程的影响。实验结果表明,最佳的工艺条件为:再沸器热负荷(Q_R)为0.51 MW、提馏段塔板数为3、侧反应器台数为2、总催化剂装填量为2 300 kg、催化剂在上下两台侧反应器中的分配系数分别为0.44和0.56。在该条件下,集成过程具有最小TAC约2.82×10~6 Yuan/a,相较于传统工艺,DCSR工艺的Q_R减小近8.9%,催化剂用量减少了42.5%,TAC节省了18.9%。
        A novel reactive distillation process integrating a distillation column with side reactors(DCSR) was proposed for the production of cyclohexyl acetate through the additive esterification of cyclohexene and acetic acid. Aimed at the reduction of the total annual cost(TAC),when the feeding rates of both cyclohexene and acetic acid were 10 kmol/h and the mass fraction of cyclohexyl acetate in the column bottom was stipulated as 99.5%(w),the effects of operating conditions and the integration structure on the esterification were investigated by means of the Aspen Plus process simulation software. The results indicated that,under the opt imal DCSR process conditions of reboiler duty 0.51 MW,the stripping section plates number is 3,number of side reactors 2 and catalyst loading 2 300 kg with a distribution coefficient of 0.44/0.56,TAC was 2.82×10~6 Yuan/a,lower than that of the traditional reaction-separation process. Comparison to the traditional reactionseparation process,the reboiler duty,catalyst loading and TAC of the DCSR process decreased by 8.9%,42.5% and 18.9%,respectively.
引文
[1]Vyver S V D,Román-Leshkov Y.Emerging catalytic processes for the production of adipic acid[J].Catal Sci Technol,2013,3(6):1465-1479.
    [2]项益智,李小年.苯酚液相原位加氢合成环己酮和环己醇[J].化工学报,2007,58(12):3041-3045.
    [3]Misono M,Inui T.New catalytic technologies in Japan[J].Catal Today,1999,51(3/4):369-375.
    [4]Mitsui O,Fukuoka Y.Process for producing cyclic alcohol:US 4588846[P].1986-05-13.
    [5]靳敬敬,李芳,杨丽红,等.HZSM-5催化乙酸环己酯水解反应[J].石油学报:石油加工,2014,30(1):169-174.
    [6]王碧玉,葛秀秀,吴方棣,等.环己烯催化水合制环己醇的研究进展[J].化工进展,2010,29(5):861-865.
    [7]Imam R A,Fre und H,Guit R P M,et al.Evaluation of different process concepts for the indirect hydration of cyclohexene to cyclohexanol[J].Org Process Res Dev,2 013,17(3):343-358.
    [8]Katariya A,Freund H,Kai S.Two-ste p reactive distillation process for cyclohexanol production from cyclohexene[J].Ind Eng Chem Res,2009,48(21):9534-9545.
    [9]Kumar R,Katariya A,Freund H,et al.Development of a novel catalytic distillation process for cyclohexanol production:Mini plant experiments and complementary process simulations[J].Org Process Res Dev,2011,15(3):527-539.
    [10]Bhatia S P,Letizia C S,Api A M.Fragrance material review on cyclohexyl acetate[J].Food Chem Toxicol,2008,46(12):S52-S55.
    [11]Chakrabarti A,Man M S.Cyclohexanol from cyclohexene via cyclohexyl acetate:Catalysis by ion-exchange resin and acidtreated clay[J].React Polym,1992,18(2):107-115.
    [12]Yang Fang,Xue Wei,Zhang Dongsheng,et al.Hydrolysis of cyclohexyl acetate to cyclohexanol with high selectivity over SO3H-functionalized ionic liquids[J].React Kinet Mech Catal,2016,117(1):1-11.
    [13]徐骏,乔旭,崔咪芬,等.制备氯代环己烷的反应精馏耦合工艺研究[J].石油化工,2005,34(1):37-40.
    [14]丁良辉,汤吉海,崔咪芬,等.常压反应-减压精馏耦合生产氯化苄的工艺优化设计[J].化工学报,2011,62(8):2323-2327.
    [15]黄玉鑫,汤吉海,陈献,等.不同温度反应与精馏集成生产醋酸叔丁酯的过程模拟[J].化工学报,2015,66(10):4039-4046.
    [16]Baur R,Krishna R.Distillation column with reactive pump arounds:An alternative to reactive distillation[J].Catal Today,2004,79/80(3):113-123.
    [17]Citro F,Lee J W.Widening the applicability of reactive distillation technology by using concurrent design[J].Ind Eng Chem Res,2003,43(2):375-383.
    [18]Ye Jianchu,Li Jun,Sha Yong,et al.Evaluation of reactive distillation and side reactor confi guration for direct hydration of cyclohexene to cyclohexanol[J].Ind Eng Chem Res,2014,53(4):1461-1469.
    [19]陈幸福,陈献,汤吉海,等.醋酸与环己烯酯化合成醋酸环己酯宏观动力学[J].石油化工,2015,44(7):833-838.
    [20]Douglas J M.Conceptual design of chemical processes[M].New York:Mc Graw-Hill,1988:345-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700