氧化亚铁硫杆菌密度与营养供给对硫铁矿生物氧化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of density and nutrition supply of Acidithiobacillus ferrooxidans on biological oxidation of pyrite
  • 作者:乔星星 ; 刘冠兰 ; 周立祥 ; 许剑敏 ; 郝鲜俊 ; 刘奋武
  • 英文作者:QIAO Xingxing;LIU Guanlan;ZHOU Lixiang;XU Jianmin;HAO Xianjun;LIU Fenwu;Environmental Engineering Laboratory,College of Resource and Environment,National Experimental Teaching Demonstration Center for Agricultural Resources and Environment in Shanxi Agricultural University;Departments of Environmental Engineering,College of Resources and Environmental Sciences,Nanjing Agricultural University;
  • 关键词:硫铁矿 ; 氧化亚铁硫杆菌 ; 菌密度 ; 营养供给 ; 矿物形貌
  • 英文关键词:pyrite;;Acidithiobacillus ferrooxidans;;cell density;;nutrient supply;;mineral morphology
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:山西农业大学资源环境学院环境工程实验室山西农业大学农业资源与环境国家级实验教学示范中心;南京农业大学资源与环境科学学院环境工程系;
  • 出版日期:2017-09-11 17:17
  • 出版单位:环境科学学报
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金(No.21637003,21407102);; 山西省自然科学基金(No.2015011022);; 山西农业大学青年拔尖创新人才项目(No.TYIT 201405)~~
  • 语种:中文;
  • 页:HJXX201802003
  • 页数:8
  • CN:02
  • ISSN:11-1843/X
  • 分类号:16-23
摘要
探究硫铁矿生物氧化过程的影响因素有利于揭示酸性矿山废水形成规律.本研究采用摇瓶试验,探究了氧化亚铁硫杆菌Acidithiobacillus ferrooxidans LX5(A.ferrooxidans LX5)密度对硫铁矿生物氧化的影响.同时,在菌密度为1.40×107cells·m L-1的环境中,研究了微生物营养(无铁改进型9K液体培养基)供给对硫铁矿生物氧化的影响.结果表明,A.ferrooxidans LX5及其营养成分的引入显著加速了硫铁矿生物氧化体系H+的释放,0.70×107~2.10×107cells·m L-1A.ferrooxidans LX5的引入,可使得H+释放量较无菌对照提高1.51~3.31倍.半量浓度和全量浓度无铁改进型9K液体培养基的加入,可使菌密度为1.40×107cells·m L-1硫铁矿氧化体系的H+释放量提高3.24与2.75倍.相对于A.ferrooxidans LX5密度为0.70×107cells·m L-1的体系,1.40×107cells·m L-1或2.10×107cells·m L-1A.ferrooxidans LX5的引入明显提高硫铁矿氧化体系总Fe离子与SO2-4的释放效率,且71.9%~88.3%的总Fe离子主要以Fe2+存在.微生物营养供给使得总Fe离子与SO2-4的释放效率加速显著,而总Fe离子几乎全部以Fe3+存在.当菌密度大于1.40×107cells·m L-1时,体系生物氧化后所得硫铁矿表面存在明显的侵蚀坑.相对于半量浓度改进型9K培养基养分供给,全量改进型9K液体培养基的引入由于体系次生铁矿物覆盖硫铁矿明显而抑制了总Fe离子与SO2-4的释放.硫铁矿氧化所得酸性废水经Ca O中和至pH约为7.00,总Fe近乎全部去除,而SO2-4去除率相对较低(26.7%~73.9%).本研究所得结果对明晰酸性矿山废水形成规律具有一定的指导意义.
        Exploring the influence factors of pyrite biological oxidation process could help to reveal the formation of acid mine drainage. The effect of Acidithiobacillus ferrooxidans LX5( A. ferrooxidans LX5) density on pyrite biooxidation process has been investigated. In addition,the effect of microbial nutrient( iron-free modified 9 K liquid medium) on the bio-oxidation of pyrite was explored in the A. ferrooxidans LX5 cell density of 1.40×107 cells·m L-1.The results show that the introduction of A. ferrooxidans LX5 and its nutrient components significantly accelerated the release of H+in pyrite oxidation system. A. ferrooxidans LX5 of 0.70×107~ 2.10×107 cells·m L-1 can increase the release of H+by 1.51 ~ 3.31 fold. The addition of iron-free 9 K liquid medium with half or total concentration can increase the release rate of H+by 3.24 and 2.75 times in the pyrite oxidation system with 1.40×107 cells·m L-1 of A. ferrooxidans LX5. Compared with A. ferrooxidans LX5 density of 0. 70 × 107 cells·m L-1 system,the release efficiency of total Fe and SO2-4 was improved because of introduction of A. ferrooxidans LX5 of 1.40×107 or 2.10×107 cells·m L-1 with 71.9% ~ 88.3% of total Fe ions mainly exists as Fe2+.The release efficiency of total Fe ions and SO2-4 was obvious accelerated by microbial nutrition supply,and the total Fe mainly exists as Fe3+. There are obvious erosion pit on the pyrite surface after the biological oxidation when the density of A. ferrooxidans LX5 was more than 1. 40 × 107 cells·m L-1.Compared with the half concentration,the total iron-free modified 9 K liquid medium introduction was apparently suppress the release of total Fe ions and SO2-4 because of the secondary iron minerals covers the pyrite during pyrite biooxidation process. After pyrite oxidation,the acid waste water was neutralized to pH ~ 7 with calcium oxide,and the total Fe ions was almost completely removed,while the SO2-4 removal rate was relatively low with26.7% ~ 73.9%. The outcomes of this study will provide scientific significance to clarify the formation rule of acid mine drainage.
引文
鲍士旦.2000.土壤农化分析[M].北京:中国农业出版社
    常前发.2010.我国矿山尾矿综合利用和减排的新进展[J].金属矿山,39(3):1-5
    Chandraprabha M N,Natarajan K A.2013.Role of outer membrane exopolymers of Acidithiobacillus ferrooxidans in adsorption of cells onto pyrite and chalcopyrite[J].International Journal of Mineral Processing,123(6):152-157
    陈炳辉,万茉莉,王智美,等.2010.粤北大宝山多金属矿酸性矿山废水中氧化亚铁硫杆菌对黄铁矿的生物氧化作用研究[J].岩石矿物学杂志,29(5):562-568
    Jr O G,Bigham J M,Tuovinen O H.2007.Oxidation of isochemical FeS 2(marcasite-pyrite)by Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans[J].Minerals Engineering,20(1):98-101
    龚文琪,陈伟,张晓峥,等.2007.氧化亚铁硫杆菌的分离培养及其浸磷效果[J].过程工程学报,7(3):584-588
    Gleisner M,Herbert Jr.R B,Kockum P C F.2006.Pyrite oxidation by Acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J].Chemical Geology,225(1):16-29
    Gu G H,Sun X J,Hu K T,et al.2012.Electrochemical oxidation behavior of pyrite bioleaching by Acidthiobacillus ferrooxidians[J].Transactions of Nonferrous Metals Society of China,22(5):1250-1254
    何良菊,李秀艳.1999.Fe2+、NH+4 对氧化亚铁硫杆菌氧化黄铁矿的影响[J].材料与冶金学报,(4):278-280
    JCPDS(Joint Committee on Powder Diffraction Standards).2002.Mineral Powder Diffraction Files[Z].International Center for Diffraction Data,Swarthmore:Pennsyvania.
    蒋万祥,唐涛,贾兴焕,等.2008.硫铁矿酸性矿山废水对大型底栖动物群落结构的影响[J].生态学报,28(10):4805-4814
    蒋磊,周怀阳,彭晓彤,2007.氧化亚铁硫杆菌对黄铁矿的氧化作用初探[J].矿物学报,27(1):25-30
    Kefeni K K,Msagati T A M,Mamba B B.2017.Acid mine drainage:Prevention,treatment options,and resource recovery:A review[J].Journal of Cleaner Production.151:475-493
    Liu J S,Wang Z H,Chen H,et al.2006.Interfacial electrokinetic characteristics before and after bioleaching microorganism adhesion to pyrite[J].Transactions of Nonferrous Metals Society of China,16(3):676-680
    刘奋武,高诗颖,卜玉山,等.2014.培养转速与镁离子对生物合成次生铁矿物的影响研究[J].环境科学学报,34(6):1429-1435
    Liu F W,Zhou J,Zhou L X,et al.2015.Effect of neutralized solid waste generated in lime neutralization on the ferrous ion bio-oxidation process during acid mine drainage treatment[J].Journal of Hazardous Materials,299:404-411
    Nicomrat D,Dick W A,Dopson M,et al.2008.Bacterial phylogenetic diversity in a construction wetland system treating acid coal mine drainage[J].Soil Biology and Biochemistry,40(2):312-321
    孙小俊.2010.黄铁矿微生物浸出及其电化学研究[D].长沙:中南大学
    Tu Z H,Guo C L,Zhang T,et al.2017.Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans[J].Hydrometallurgy,167:58-65
    Tabelin C B,Veerawattananun S,Ito M,et al.2017.Pyrite oxidation in the presence of hematite and alumina:I.Batch leaching experiments and kinetic modeling calculations[J].Science of the Total Environment,580:687-698
    杨绍章,吴攀,张瑞雪,等.2011.有氧垂直折流式反应池处理煤矿酸性废水[J].环境工程学报,5(4):789-794
    姚海元.2007.酸性矿山废水对农田土壤动物群落结构的影响[D].广州:华南农业大学
    王世梅.2007.耐酸性酵母菌R30加速污泥生物沥浸进程机理研究[D].南京:南京农业大学
    钟慧芳,蔡文六,李雅芹,1987.黄铁矿的细菌氧化[J].微生物学报,27(3):264-270
    张明亮,胡振琪.2008.煤矸石山酸性矿山废水的控制研究综述[J].有色金属,60(4):150-153
    张莎莎,沈晨,刘兰兰,等.2016.附着微生物黄铁矾回流对不同温度酸性硫酸盐体系亚铁氧化及总铁沉淀的强化效果[J].环境科学学报,36(2):513-520
    Zhang J,Shi J,Zhang S S,et al.2017.Schwertmannite adherence to the reactor wall during the bio-synthesis process and deterioration of its structural characteristics and arsenic(III)removal efficiency[J].Minerals,7(4):64;doi:10.3390/min7040064
    周顺桂,周立祥,黄焕忠.2002.生物林虑技术在去除污泥中重金属的应用[J].生态学报,22(1):125-133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700