利用先验重力场模型求定GOCE卫星重力梯度仪校准参数
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Calibration for GOCE gradiometer data based on the prior gravity models
  • 作者:瞿庆亮 ; 常晓涛 ; 于胜文 ; 朱广彬
  • 英文作者:QU Qingliang;CHANG Xiaotao;YU Shengwen;ZHU Guangbin;College of Geomatics,Shandong University of Science and Technology;Satellite Surveying and Mapping Application Center,NASG;
  • 关键词:GOCE ; 重力梯度 ; 校准 ; 尺度因子 ; 偏差
  • 英文关键词:GOCE;;gravity gradient;;calibration;;scale factor;;bias
  • 中文刊名:CHXB
  • 英文刊名:Acta Geodaetica et Cartographica Sinica
  • 机构:山东科技大学测绘科学与工程学院;国家测绘地理信息局卫星测绘应用中心;
  • 出版日期:2019-02-15
  • 出版单位:测绘学报
  • 年:2019
  • 期:v.48
  • 基金:民用航天预先研究项目(重力梯度测量卫星系统技术);; 高分辨率对地观测系统重大专项支持项目~~
  • 语种:中文;
  • 页:CHXB201902007
  • 页数:9
  • CN:02
  • ISSN:11-2089/P
  • 分类号:46-54
摘要
重力梯度仪校准参数的确定是GOCE重力梯度观测数据处理的关键环节。本文对GOCE卫星重力梯度观测值中的时变信号与粗差进行了分析,利用高精度全球重力场模型,确定了GOCE重力梯度观测值各分量的尺度因子与偏差,并对校准结果进行了精度评定。结果表明,在测量带宽内,海潮对重力梯度观测值影响在mE量级,与重力梯度仪的精度水平相当,陆地水等非潮汐重力场时变信号略小于海潮,量级约为10~(-4)E;各分量重力梯度观测值的粗差比例均大于0.2%;除EGM96模型外的其他模型对GOCE重力梯度仪进行校准后,V_(xx)、V_(yy)、V_(zz)、V_(yz)分量上尺度因子的稳定性均在10~(-4)量级,V_(xz)分量能达到10~(-5)量级,V_(xy)分量为10~(-2)量级,这与梯度观测值各分量的精度水平一致。
        The determination of the calibration parameters of the gravity gradiometer plays an important role in the GOCE gravity gradient data processing. In this paper, the temporal signals and outliers in the GOCE gravity gradient observations are analyzed. Based on the different global gravity field models, the scale factors and biases are determined in all the components of GOCE gravity gradients. And then the accuracy of the calibration results is validated. The results indicate that the effect of the ocean tide is at mE magnitude in the measurement band, which is equivalent to the precision of the gravity gradiometer. While the effect of the non-tide temporal signals is, with the terrestrial water is in the order of 10~(-4)E slightly less than that of the ocean tide. The outliers in all the gravity gradient components are larger than 0.2%. After the calibration using global gravity field models except EGM96, the stability of scale factors in the V_(xx),V_(yy),V_(zz),V_(yz) components reaches 10~(-4) magnitude. And the V_(xz) component reaches 10~(-5) while that of the V_(xy) component is about 10~(-2), which are in accordance with the accuracy differences of the gradient components.
引文
[1] BOUMAN J, RISPENS S, GRUBER T, et al. Preprocessing of gravity gradients at the GOCE high-level processing facility[J]. Journal of Geodesy, 2009, 83(7): 659-678.
    [2] 罗志才, 吴云龙, 钟波, 等. GOCE卫星重力梯度测量数据的预处理[J]. 武汉大学学报(信息科学版), 2009, 34(10): 1163-1167. LUO Zhicai, WU Yunlong, ZHONG Bo, et al. Pre-processing of the GOCE satellite gravity gradiometry data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(10): 1163-1167.
    [3] 苏勇, 范东明, 游为. 利用GOCE卫星数据确定全球重力场模型[J]. 物理学报, 2014, 63(9): 099101. SU Yong, FAN Dongming, YOU Wei. Gravity field model calculated by using the GOCE data[J]. Acta Physica Sinica, 2014, 63(9): 099101.
    [4] RUMMEL R, YI Weiyong, STUMMER C. GOCE gravitational gradiometry[J]. Journal of Geodesy, 2011, 85(11): 777-790.
    [5] 朱广彬. 卫星重力梯度测量技术确定地球重力场的理论方法研究[D]. 武汉: 武汉大学, 2010. ZHU Guangbin. Research on the theory and methodology for the Earth’s gravity field determination using satellite gravity gradiometry measurement[D]. Wuhan: Wuhan University, 2010.
    [6] ARABELOS D, TSCHERNING C C. Calibration of satellite gradiometer data aided by ground gravity data[J]. Journal of Geodesy, 1998, 72(11): 617-625.
    [7] BOUMAN J, KOOP R, TSCHERNING C C, et al. Calibration of GOCE SGG data using high-low SST, terrestrial gravity data and global gravity field models[J]. Journal of Geodesy, 2004, 78(1-2): 124-137.
    [8] ARABELOS D N, TSCHERNING C C. A comparison of recent earth gravitational models with emphasis on their contribution in refining the gravity and geoid at continental or regional scale[J]. Journal of Geodesy, 2010, 84(11): 643-660.
    [9] SIEMES C, HAAGMANS R, KERN M, et al. Monitoring GOCE gradiometer calibration parameters using accelerometer and star sensor data: methodology and first results[J]. Journal of Geodesy, 2012, 86(8): 629-645.
    [10] PAIL R. Local gravity field continuation for the purpose of in-orbit calibration of GOCE SGG observations[J]. Advances in Geosciences, 2013, 1: 11-18.
    [11] VISSER P N A M, VAN DEN IJSSEL J A A. Calibration and validation of individual GOCE accelerometers by precise orbit determination[J]. Journal of Geodesy, 2016, 90(1): 1-13.
    [12] BOUMAN J, FIOROT S, FUCHS M, et al. GOCE level 2 gravity gradients[C]//Proceedings of the 4th International Goce User Workshop. Munchen, Germany: ESA, 2011: 1-4.
    [13] VISSER P N A M. GOCE gradiometer validation by GPS[J]. Advances in Space Research, 2007, 39(10): 1630-1637.
    [14] FROMMKNECHT B, LAMARRE D, MELONI M, et al. GOCE level 1B data processing[J]. Journal of Geodesy, 2011, 85(11): 759-775.
    [15] BOUMAN J, FIOROT S, FUCHS M, et al. GOCE gravitational gradients along the orbit[J]. Journal of Geodesy, 2011, 85(11): 791-805.
    [16] RISPENS S M, BOUMAN J. External calibration of GOCE accelerations to improve derived gravitational gradients[J]. Journal of Geodetic Science, 2011, 1(2): 114-126.
    [17] 徐天河, 杨元喜. 利用现有重力场模型求定CHAMP卫星加速度计修正参数[J]. 测绘学报, 2004, 33(3): 200-204. DOI: 10.3321/j.issn:1001-1595.2004.03.003. XU Tianhe, YANG Yuanxi. Calibration for CHAMP accelerometry data based on known earth gravity field model[J]. Acta Geodaetica et Cartographica Sinica, 2004, 33(3): 200-204. DOI: 10.3321/j.issn:1001-1595.2004.03.003.
    [18] WU Yunlong, LI Hui, ZOU Zhengbo, et al. External calibration of GOCE data using regional terrestrial gravity data[J]. Geodesy and Geodynamics, 2012, 3(3): 34-39.
    [19] 徐新禹, 赵永奇, 魏辉, 等. 利用先验重力场模型对GOCE卫星重力梯度观测值进行校准分析[J]. 测绘学报, 2015, 44(11): 1196-1201. DOI: 10.13203/j.whugis20140861.XU Xinyu, ZHAO Yongqi, WEI Hui, et al. Calibration and analysis of SGG observations of GOCE based on prior gravity models[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(11): 1196-1201. DOI: 10.13203/j.whugis20140861.
    [20] 吴云龙. GOCE卫星重力梯度测量数据的预处理研究[D]. 武汉: 武汉大学, 2010. WU Yunlong. Study on pre-processing of GOCE satellite gravity gradiometry data[D]. Wuhan: Wuhan University, 2010.
    [21] FUCHS M J, BOUMAN J. Rotation of GOCE gravity gradients to local frames[J]. Geophysical Journal International, 2011, 187(2): 743-753.
    [22] 苏勇, 范东明, 黄强. GOCE梯度数据坐标系转换及误差分析[J]. 大地测量与地球动力学, 2014, 34(3): 151-154. SU Yong, FAN Dongming, HUANG Qiang. Coordinate system conversion of GOCE gradients data and error analysis[J]. Journal of Geodesy and Geodynamics, 2014, 34(3): 151-154.
    [23] 邓文彬, 许闯, 阿力甫·努尔买买提. 卫星重力梯度观测数据的时变信号影响分析[J]. 武汉大学学报(信息科学版), 2016, 41(1): 72-78. DENG Wenbin, XU Chuang, ALLFU·NURMMAMAT. Effect of time-varying gravity signal on satellite gravity gradient observations[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 72-78.
    [24] KERN M, PREIMESBERGER T, ALLESCH M, et al. Outlier detection algorithms and their performance in GOCE gravity field processing[J]. Journal of Geodesy, 2005, 78(9): 509-519.
    [25] 罗志才, 周波阳, 钟波, 等. 卫星重力梯度测量数据的粗差探测[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1392-1396. LUO Zhicai, ZHOU Boyang, ZHONG Bo, et al. Outlier detection of satellite gravity gradiometry data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1392-1396.
    [26] LEMOINE F G, KENYON S C, FACTOR J K, et al. The development of the joint NASA GSFC and the National Imagery and Mapping Agency (nima) geopotential model EGM96[R]. Greenbelt, MD: NASA Goddard Space Flight Center, 1998: 103-115.
    [27] PAVLIS N K, HOLMES S A, KENYON S C, et al. The development and evaluation of the earth gravitational model 2008 (EGM2008)[J]. Journal of Geophysical Research, 2012, 117(B4): B04406.
    [28] RIES J C, BETTADPUR S, POOLE S, et al. Mean background gravity fields for grace processing[C]//Proceedings of GRACE Science Team Meeting. Austin, TX: [s.n.], 2011.
    [29] TAPLEY B D, FLECHTNER F, BETTADPUR S V, et al. The status and future prospect for GRACE after the first decade[C]//Proceedings of AGU Fall Meeting. [S.l.]: AGU, 2013.
    [30] F?RSTE C, BRUINSMA S L, ABRIKOSOV O, et al. EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ potsdam and GRGS toulouse[R]. Berlin: GFZ, 2014.
    [31] GATTIA, REGUZZONI M. GOCE gravity field model by means of the space-wise approach (release r5)[R]. Berlin: GFZ, 2017.
    [32] 梁伟, 徐新禹, 李建成, 等. 联合EGM2008模型重力异常和GOCE观测数据构建超高阶地球重力场模型SGG-UGM-1[J]. 测绘学报, 2018, 47(4): 425-434. DOI: 10.11947/j.AGCS.2018.20170269. LIANG Wei, XU Xinyu, LI Jiancheng, et al. The determination of an ultra-high gravity field model SGG-ugm-1 by combining EGM2008 gravity anomaly and GOCE observation data[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(4): 425-434. DOI: 10.11947/j.AGCS.2018.20170269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700