纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of laser intensity on microwave radiation generated in nanosecond laser-plasma interactions
  • 作者:姜炜曼 ; 李玉同 ; 张喆 ; 朱保君 ; 张翌航 ; 袁大伟 ; 魏会冈 ; 梁贵云 ; 韩波 ; 刘畅 ; 原晓霞 ; 华能 ; 朱宝强 ; 朱健强 ; 方志恒 ; 王琛 ; 黄秀光 ; 张杰
  • 英文作者:Jiang Wei-Man;Li Yu-Tong;Zhang Zhe;Zhu Bao-Jun;Zhang Yi-Hang;Yuan Da-Wei;Wei Hui-Gang;Liang Gui-Yun;Han Bo;Liu Chang;Yuan Xiao-Xia;Hua Neng;Zhu Bao-Qiang;Zhu Jian-Qiang;Fang Zhi-Heng;Wang Chen;Huang Xiu-Guang;Zhang Jie;Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences;School of Physical Sciences, University of Chinese Academy of Sciences;Songshan Lake Materials Laboratory;National Astronomical Observatories, Chinese Academy of Science;Department of Astronomy, Beijing Normal University;Shanghai Institute of Optical and Fine Mechanics,Chinese Academy of Sciences;Shanghai Institute of Laser Plasma, China Academy of Engineering Physics;Collaborative Innovation Center of IFSA (CICIFSA),Shanghai Jiao Tong University;
  • 关键词:强激光 ; 微波辐射 ; 电磁干扰 ; 纳秒激光等离子体
  • 英文关键词:intense laser;;microwave radiation;;electromagnetic disturbance;;nanosecond laser plasma
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:中国科学院物理研究所北京凝聚态物理国家研究中心;中国科学院大学物理科学学院;松山湖材料实验室;中国科学院国家天文台;北京师范大学天文系;中国科学院上海光学精密机械研究所高功率激光与物理国家实验室;中国工程物理研究院上海激光等离子体研究所;上海交通大学IFSA协同创新中心;
  • 出版日期:2019-06-23
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:科学挑战计划(批准号:TZ2016005);; 中国科学院国际合作局对外合作重点项目(批准号:112111KYSB20160015)、中国科学院战略先导专项(批准号:XDB16010000)资助的课题;; 国家自然科学基金(批准号:11520101003,11827807,11861121001)~~
  • 语种:中文;
  • 页:WLXB201912019
  • 页数:9
  • CN:12
  • ISSN:11-1958/O4
  • 分类号:189-197
摘要
在强激光与等离子体的相互作用中,通常能够产生时间尺度长达百纳秒量级的微波辐射,形成的复杂电磁环境会干扰或损坏机械电子设备,并给物理过程的准确认识与表征带来困难.然而,目前对于微波辐射的产生机制的研究还不够系统和完善.本文通过系统地改变纳秒激光与等离子体作用过程中入射的激光能量以改变入射激光强度,发现微波辐射强度随激光强度非单调变化.在较低的激光强度下,辐射强度随激光强度的增加先增加后减小,辐射场时间波形呈现连续振荡的特征,辐射频谱包含低于和高于0.3 GHz两部分分量;在较高的激光强度下,辐射强度随激光强度的增加而增加,辐射场时间波形表现为数十纳秒的单极性辐射,辐射频谱主要包括0.3 GHz以下的分量.分析表明,导致微波波形和频谱差别的原因是辐射机制发生了变化.在较低的激光强度下,微波辐射由偶极辐射和靶上电子束向真空出射共同作用产生,其中偶极辐射占主导;在较高的激光强度下,微波辐射主要由靶上电子束向真空出射产生.研究结果对于理解纳秒激光与等离子体相互作用过程中的微波辐射机制具有比较重要的意义,同时也为借助微波辐射诊断激光与等离子体相互作用过程中的逃逸电子、靶面鞘层场等问题提供了参考.
        Microwave radiation in several gigahertz frequency band is a common phenomenon in laser-plasma interactions. It can last hundreds of nanoseconds and cause huge electromagnetic pulse disturbances to electrical devices in experiments. It has been found that the microwave radiation might originate from the oscillation of charged chambers, the return current on target holders, the dipole radiation, the quadrupole radiation, and the electron bunch emitted from the plasma to the vacuum. The microwave radiation waveform, frequency spectrum, and intensity depend on many factors such as laser pulse, target, and chamber parameter. To distinguish the microwave radiation mechanisms, the influence of the experimental parameters on the radiation characteristics should be investigated systematically. In this paper we investigate the microwave radiation influenced by the laser intensity in nanosecond laser-plasma interactions. It is found that the microwave radiation intensity varies nonmonotonically with the laser intensity. For the lower laser intensity, the radiation intensity first increases and then decreases with laser intensity increasing, the radiation field continuously oscillates in tens of nanoseconds, and the radiation spectrum contains two components below and above 0.3 GHz,respectively. For the higher laser intensity, the radiation intensity increases with the laser intensity increasing,the radiation field has a unipolar radiation lasting tens of nanoseconds, and the radiation spectrum mainly includes the component below 0.3 GHz. The waveform and spectrum analysis show that these phenomena are due to the difference of the radiation mechanisms at different laser intensities. The frequency component below and above 0.3 GHz are induced by the electron bunch emitted from the plasma to the vacuum and the dipole radiation respectively. At low laser intensity, both the dipole radiation and the electron bunch emitted from the plasma contribute to the microwave radiation. At high laser intensity, the microwave radiation is mainly produced by the electron beam emitted from the plasma to the vacuum. This work is significant for understanding the microwave radiation mechanisms in nanosecond laser-plasma interactions, and implies the potential to provide a reference to the diagnosing of the escape electrons and the sheath field on the target surface by the microwave radiation in laser-plasma interaction.
引文
[1] Campbell E M, Goncharov V N, Sangster T C, Regan S P,Radha P B, Betti R, Myatt J F, Froula D H, Rosenberg M J,Igumenshchev I V, Seka W, Solodov A A, Maximov A V,Marozas J A, Collins T J B, Turnbull D, Marshall F J,Shvydky A, Knauer J P, McCrory R L, Sefkow A B,Hohenberger M, Michel P A, Chapman T, Masse L, Goyon C,Ross S, Bates J W, Karasik M, Oh J, Weaver J, Schmitt A J,Obenschain K, Obenschain S P, Reyes S, Wonterghem V2017 Matter Radiat. Extremes 2 37
    [2] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M,Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D, Campbell E M 2000 Phys. Rev. Lett. 85 2945
    [3] Mangles S P D, Murphy C D, Najmudin Z, Thomas A G R,Collier J L, Dangor A E, Divall E J, Foster P S, Gallacher J G, Hooker C J, Jaroszynski D A, Langley A J, Mori W B,Norreys P A, Tsung F S, Viskup R, Walton B R, Krushelnick K 2004 Nature 431 535
    [4] Phuoc K T, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S, Rousse A 2012 Nat. Photon. 6 308
    [5] Rousse A, Phuoc K T, Shah R, Pukhov A, Lefebvre E, Malka V, Kiselev S, Burgy F, Rousseau J, Umstadter D, Hulin D2004 Phys. Rev. Lett. 93 135005
    [6] Liao G, Li Y, Liu H, Scott G G, Neely D, Zhang Y, Zhu B,Zhang Z, Armstrong C, Zemaityte E, Bradford P, Huggard P G, Rusby, D R, McKenna P, Brenner C M, Woolsey N C,Wang W, Sheng Z, Zhang J 2019 Proc. Natl. Acad. Sci. USA116 3994
    [7] Robinson T S, Consoli F, Giltrap S, Eardley S J, Hicks G S,Ditter E J, Ettlinger O, Stuart N H, Notley M, de Angelis R,Najmudin Z, Smith R A 2017 Sci. Rep. 7 983
    [8] Meng C, Xu Z Q, Jiang Y S, Zheng W G, Dang Z 2017 IEEE Trans. Nucl. Sci. 64 10
    [9] Pearlman J S, Dahlbacka G H 1978 J. Appl. Phys. 49 457
    [10] Gerdin G, Tanis M J, Venneri F 1986 Plasma Phys. Control.Fusion 28 527
    [11] Mead M J, Neely D, Gauoin J, Heathcote R, Patel P 2004Rev. Sci. Instrum. 75 4225
    [12] Raimbourg J 2004 Rev. Sci. Instrum. 75 4234
    [13] Felber F S 2005 Appl. Phys. Lett. 86 231501
    [14] Remo J L, Adams R G, Jones M C 2007 Appl. Opt. 46 6166
    [15] Miragliotta J, Brawley B, Sailor C, Spicer J B, Spicer J W M2011 Proc. SPIE 8037 80370N-1
    [16] Chen Z Y, Li J F, Yu Y, Wang J X, Li X Y, Peng Q X, Zhu W J 2012 Phys. Plasmas 19 113116
    [17] Dai Y J, Song X W, Gao X, Wang X S, Lin J Q 2017 Acta Phys.Sin.66 185201(in Chinese)[戴宇佳,宋晓伟,高勋,王兴生,林景全2017物理学报66 185201]
    [18] Englesbe A, Elle J, Reid R, Lucero A, Pohle H, Domonkos M,Kalmykov S, Krushelnick K, Schmitt-Sody A 2018 Opt. Lett.43 4953
    [19] Brown C G, Bond E, Clancy T, Dangi S, Eder D C, Ferguson W, Kimbrough J, Throop A 2010 J. Phys.:Conf. Ser. 244032001
    [20] Tao Y, Yang M, Wang C, Yang W, Li Y, Liu S, Jiang S,Ding Y, Xiao S 2016 Photon. Sens. 6 249
    [21] Bradford P, Woolsey N C, Scott G G, Liao G, Liu H, Zhang Y, Zhu B, Armstrong C, Astbury S, Brenner C, Brummitt P,Consoli F, East I, Gray R, Haddock D, Huggard P, Jones P J R, Montgomery E, Musgrave I, Oliveira P, Rusby D R,Spindloe C, Summers B, Zemaityte E, Zhang Z, Li Y,McKenna P, Neely D 2018 High Power Laser Sci. Eng. 6 e21
    [22] Brown C G, Ayers J, Felker B, Ferguson W, Holder J P,Nagel S R, Piston K W, Simanovskaia N, Throop A L, Chung M, Hilsabeck T 2012 Rev. Sci. Instrum. 83 10D729
    [23] Brown C G, Clancy T J, Eder D C, Ferguson W, Throop A L2013 EPJ Web of Conferences 59 08012
    [24] Consoli F, de Angelis R, de Marco M, Krasa J, Cikhardt J,Pfeifer M, Margarone D, Klir D, Dudzak R 2018 Plasma Phys. Control. Fusion 60 105006
    [25] Chen Z Y, Li J F, Li J, Peng Q X 2011 Plasma Scr. 83055503
    [26] Consoli F, de Angelis R, Duvillaret L, Andreoli P L, Cipriani M, Cristofari G, Di Giorgio G, Ingenito F, Verona C 2016Sci. Rep. 6 27889
    [27] Krasa J, de Marco M, Cikhardt J, Pfeifer M, Velyhan A, Klfr D, Rezac K, Limpouch J, Krousky E, Dostal J, Ullschmied J,Dudzak R 2017 Plasma Phys. Control. Fusion 59 065007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700