阳极经颅直流电刺激联合康复治疗对外伤性脊髓损伤运动功能障碍的康复疗效
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Anodal transcranial direct current stimulation combined with rehabilitation interventions for motor dysfunction after traumatic spinal cord injury
  • 作者:刘莹 ; 桂裕昌 ; 许建文 ; 廖媚 ; 黄潇潇 ; 胡金翠 ; 樊继波 ; 苏义基
  • 英文作者:LIU Ying;GUI Yuchang;XU Jianwen;LIAO Mei;HUANG Xiaoxiao;HU Jincui;FAN Jibo;SU Yiji;Department of Rehabilitation, the First Affiliated Hospital of Guangxi Medical University;
  • 关键词:经颅直流电刺激 ; 外伤 ; 脊髓损伤 ; 运动功能 ; 康复
  • 英文关键词:Transcranial direct current stimulation;;Trauma;;Spinal cord injury;;Motor function;;Rehabilitation
  • 中文刊名:HXYX
  • 英文刊名:West China Medical Journal
  • 机构:广西医科大学第一附属医院康复医学科;
  • 出版日期:2019-05-16 10:00
  • 出版单位:华西医学
  • 年:2019
  • 期:v.34
  • 基金:广西自然科学基金(2016GXNSFBA380020,2018GXNSFAA138010,2018GXNSFAA050033);; 广西医疗卫生适宜技术开发与推广应用项目(S2018021)
  • 语种:中文;
  • 页:HXYX201905010
  • 页数:6
  • CN:05
  • ISSN:51-1356/R
  • 分类号:52-57
摘要
目的探讨阳极经颅直流电刺激(transcranial direct current stimulation,tDCS)联合常规康复治疗对外伤性脊髓损伤(spinal cord injury,SCI)所致运动功能障碍的康复疗效。方法回顾性纳入2015年9月—2018年11月SCI患者225例,按其接受的康复治疗方案分为对照组和观察组。对照组采用常规康复治疗(包括肢体功能训练、理疗和针灸等综合康复治疗),观察组采用阳极tDCS联合常规康复治疗(方案同对照组);为探讨SCI部位和程度对康复疗效的影响,进一步按照损伤部位(颈段、胸腰段)和程度(完全性和不完全性)进行亚组分析;分别于治疗前、治疗30 d后对患者进行运动功能、功能独立性量表及改良Barthel指数评分;并用运动诱发电位对运动功能进行客观评估。结果治疗30 d后,观察组的运动功能评分[(48.26±6.57)分]、功能独立性量表评分[(60.68±6.05)分]和改良Barthel指数[(68.73±7.57)分]均较其治疗前及对照组显著增高(P<0.05),而第7颈椎棘突旁、皮质手区、腓骨小头、皮质腿区运动诱发电位潜伏期[(9.20±0.42)、(17.81±0.56)、(3.24±0.47)、(23.06±0.98)ms]以及上肢、下肢中枢运动传导时间[(6.08±0.50)、(18.06±0.99)ms]明显降低(P<0.05);进一步以损伤部位及程度两个因素分别进行亚组分析显示,治疗30 d后观察组运动功能、功能独立性量表和改良Barthel指数评分均显著高于对照组,而运动诱发电位上、下肢中枢运动传导时间明显低于对照组(P<0.05)。结论阳极tDCS联合常规康复治疗能显著促进SCI患者运动功能的恢复,可能成为SCI神经功能障碍康复干预的新方案。
        Objective To investigate the effect of anodal transcranial direct current stimulation(tDCS) combined with rehabilitation interventions on the patients suffering from motor dysfunction after traumatic spinal cord injury(SCI). Methods Two hundred and twenty-five patients with SCI from September 2015 to November 2018 were retrospectively included in this study. According to their accepted rehabilitation interventions, patients were divided into the intervention group and the control group. In the control group, the patients just accepted routine rehabilitation interventions, including movement therapy on limbs, physical therapy and acupuncture, while the patients in the intervention group accepted anodal tDCS combined with routine interventions(the same as the control group). The baseline between the two groups was similar. Moreover, subgroup analysis including trauma site and extent were carried out for further exploration for the positive effect of tDCS on motor function suffering from acute traumatic SCI. American Spinal Injury Association(ASIA) motor item, Functional Independence Measure(FIM) and modified Barthel index(MBI), as well as motor evoked potential(MEP) were carried out for the evaluation of motor function ahead of and 30 days after intervention. Results After 30-day rehabilitation intervention, the scores of ASIA motor item(48.26±6.57),FIM(60.68±6.05) and MBI(68.73±7.57) were all significantly higher in the intervention group than those in the control group(all P<0.05). Besides, MEP latency of C7 [(9.20±0.42) ms], hand area [(17.81±0.56) ms], Pf [(3.24±0.47) ms] and leg area [(23.06±0.98) ms], as well as central motor conduction time of upper limbs [(6.08±0.50) ms] and lower limbs[(18.06±0.99) ms] were all significantly lower in the intervention group than those in the control group(P<0.05). In addition, the subgroup analyses based on injury site and injury extent also showed that anodal tDCS associated with better motor recovery, in that the scores of ASIA motor item, FIM and MBI were all significantly higher in the intervention group than those in the control group(P<0.05), while the MEP central motor conduction time of upper limbs and lower limbs were all significantly lower in the intervention group than those in the control group(P<0.05). Conclusion Anodal tDCS could distinctly promote the recovery of motor function in patients suffering from motor dysfunction after traumatic SCI, indicating that anodal tDCS may play an important role in the rehabilitation intervention for neurological dysfunction.
引文
1 Li HL, Xu H, Li YL, et al. Epidemiology of traumatic spinal cord injury in Tianjin, China:an 18-year retrospective study of 735cases. J Spinal Cord Med, 2018:1-13.
    2 White BAB, Dea N, Street JT, et al. The economic burden of urinary tract infection and pressure ulceration in acute traumatic spinal cord injury admissions:evidence for comparative economics and decision analytics from a matched case-control study.J Neurotrauma, 2017, 34(20):2892-2900.
    3 Murray LM, Tahayori B, Knikou M. Transspinal direct current stimulation produces persistent plasticity in human motor pathways. Sci Rep, 2018, 8(1):717.
    4 Gunduz A, Rothwell J, Vidal J, et al. Non-invasive brain stimulation to promote motor and functional recovery following spinal cord injury. Neural Regen Res, 2017, 12(12):1933-1938.
    5 Estes SP, Iddings JA, Field-Fote EC. Priming neural circuits to modulate spinal reflex excitability. Front Neurol, 2017, 8:17.
    6 Yamaguchi T, Fujiwara T, Tsai YA, et al. The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury. Exp Brain Res, 2016, 234(6):1469-1478.
    7 Kirshblum S, Didesch M, Botticello A, et al. Patient preferences for order of the sensory portion of the International Standards for Neurological Classification of Spinal Cord Injury(ISNCSCI)examination. J Spinal Cord Med, 2019:1-6.
    8 Cortes M, Medeiros AH, Gandhi A, et al. Improved grasp function with trancranial direct current sitmulaiton in chronic spinal cord injury. NeuroRehabilitaion, 2017, 41(1):51-59.
    9 Wecht JM, Weir JP, Katzelnick CG, et al. Systemic and cerebral hemodynamic contribution to cognitive performance in spinal cord injury. J Neurotraum, 2018, 35(24):2957-2964.
    10 Nakhjavan-Shahraki B, Yousefifard M, Rahimi-Movaghar V, et al.Transplantation of olfactory ensheathing cells on functional recovery and neuropathic pain after spinal cord injury; systematic review and met a-analysis. Sci Rep, 2018, 8(1):325.
    11 Gazdic M, Volarevic V, Harrell CR, et al. Stem cells therapy for spinal cord injury. Int J Mol Sci, 2018, 19(4):1039.
    12杨云,许光旭.脊髓损伤的临床康复进展.华西医学,2018, 33(10):1303-1310.
    13张嘉祺,廖伶艺,杨福,等.重复性经颅磁刺激用于脊髓损伤康复的研究进展.华西医学,2017, 32(10):1624-1628.
    14 Fridriksson J, Basilakos A, Stark BC, et al. Transcranial direct current stimulation to treat aphasia:longitudinal analysis of a randomized controlled trial. Brain Stimul, 2019, 12(1):190-191.
    15 Fiori V, Kunz L, Kuhnke P, et al. Transcranial direct current stimulation(tDCS)facilitates verb learning by altering effective connectivity in the healthy brain. Neuroimage, 2018, 181:550-559.
    16 Martin DM, Moffa A, Nikolin S, et al. Cognitive effects of transcranial direct current stimulation treatment in patients with major depressive disorder:an individual patient data meta-analysis of randomised, sham-controlled trials. Neurosci Biobehav Rev,2018, 90:137-145.
    17 Mally J, Stone TW, Sinko G, et al.Long term follow-up study of non-invasive brain stimulation(NBS)(rTMS and tDCS)in Parkinson's disease(PD). Strong age-dependency in the effect of NBS. Brain Res Bull, 2018, 142:78-87.
    18 Fridriksson J, Elm J, Stark BC, et al. BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimul, 2018, 11(6):1276-1281.
    19 Cortes M, Medeiros AH, Gandhi A, et al. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury. NeuroRehabilitation, 2017, 41(1):51-59.
    20龙海波,廖建平,冯大雄,等.颈脊髓损伤患者应用体感诱发电位监测的价值.华西医学,2013, 28(3):356-360.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700