开式热沉内冷刀具的设计及其导热性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Thermal Performance Analysis of an Open Internal Cold Cutting Tool with Heat Sinks
  • 作者:郑伟 ; 孙见君 ; 马晨波 ; 於秋萍 ; 张玉言 ; 牛韬
  • 英文作者:ZHENG Wei;SUN Jianjun;MA Chenbo;YU Qiuping;ZHANG Yuyan;NIU Tao;School of Mechanical and Electrical Engineering,Nanjing Forestry University;Nanjing Sulida Intelligent Control Equipment Co,Ltd;Jiangsu Sulida Advanced Technology Co,Ltd;
  • 关键词:内冷刀具 ; 切削力 ; 热流密度 ; 热-流-固耦合 ; 温度场
  • 英文关键词:internal cold cutting tool;;cutting force;;heat flux density;;thermal fluid-solid coupling;;temperature field
  • 中文刊名:MCXX
  • 英文刊名:Tribology
  • 机构:南京林业大学机械电子工程学院;南京速力达智能控制装备有限公司;江苏速力达精密科技有限公司;
  • 出版日期:2019-06-03 08:47
  • 出版单位:摩擦学学报
  • 年:2019
  • 期:v.39;No.191
  • 基金:江苏省重点研发计划项目(BE2017026)资助~~
  • 语种:中文;
  • 页:MCXX201903014
  • 页数:7
  • CN:03
  • ISSN:62-1095/O4
  • 分类号:118-124
摘要
车削加工温度对工件的表面加工质量和刀具的使用寿命具有重要影响.设计了一种开式热沉内冷刀具,计算了在实际加工工艺参数下刀具受到的切削力和前刀面上的热流密度,分析了刀具的结构强度;建立了刀具热-流-固耦合温度场模型,探讨了热稳态条件下刀具的温度场分布,以及刀片冷却液流道内热沉数量对刀具导热性能的影响规律,比较了在相同热源条件下开式热沉内冷刀具与其他内冷刀具的导热性能.结果表明:对于刀片材料为硬质合金YT5的刀具,在热流密度为10 W/mm~2的条件下,内置6个热沉的设计方案可获得最佳冷却效果,刀具的最高切削温度控制为187.1℃;与其他内冷刀具相比,开式热沉内冷刀具的最高切削温度降低了12.1℃.
        The turning temperature has an important influence on the surface quality of workpiece and the service life of cutting tool. An open-type heat sink internal cooling tool was proposed in this study, and its structural strength was analyzed firstly by calculating the cutting force and heat flux density on the rake face under the practical machining process parameters. Based on the established thermal-flow-solid coupling temperature field model, the temperature field distribution of the tool under the heat steady-state condition was then obtained. Furthermore, the influence of the number of heat sink in the blade coolant flow channel on the thermal conductivity of the tool was studied. Comparisons of the thermal conductivity between the open-type internal cooling tool with heat sinks and other internal cooling tools under the same heat source conditions were conducted. The results show that with the blade material of cemented carbide YT5,the tool had the best cooling effect(maximum cutting temperature was 187.1 ℃), when 6 heat sinks were applied under the heat flow density 10 W/mm~2. The maximum cutting temperature of the open-type internal cooling tool with 6 heat sinks was reduced by 12.1 ℃ by comparing to that of other internal cooling tools.
引文
[1]Zhao Bingzhen,Shang Hongmo,Xin Jiezhi.Modern tool design and application[M].Beijing:National Defense Industry Press,2014:44-47(in Chinese)[赵炳桢,商宏谟,辛节之.现代刀具设计与应用[M].北京:国防工业出版社,2014:44-47].
    [2]Abukhshim N A,Mativenga P T,Sheikh M A.Heat generation and temperature prediction in metal cutting:A review and implications for high speed machining[J].International Journal of Machine Tools and Manufacture,2005,46(7):782-800.doi:10.1016/j.ijmachtools.2005.07.024.
    [3]Chi Xiaoming,Zhang Xiaodong,Zhang Kai.Calculation and analysis of hot deformation of high speed CNC lathe tool[J].Mechanical Design,2011,28(11):72-76(in Chinese)[迟晓明,张小栋,张凯.高速数控车床刀具热变形的计算分析[J].机械设计,2011,28(11):72-76].doi:10.3969/j.issn.1001-3997.2011.11.029.
    [4]Yu Kaiqiang.Structural optimization and experimental study of internal cooling turning tools[D].Taiyuan:Taiyuan University of Technology,2018(in Chinese)[于凯强.内冷式车刀的结构优化与实验研究[D].太原:太原理工大学,2018].
    [5]Liang Liang.Research on heat dissipation performance of heatpipe tools for green cutting[D].Guangzhou:South China University of Technology,2010(in Chinese)[梁良.面向绿色切削的热管刀具散热性能研究[D].广州:华南理工大学,2011].
    [6]Kong Jinxing,Hu Kun,He Ning,et al.Mechanism of influence of cooling lubrication on wear of pure iron turning tools[J].Tribology,2015,35(4):378-385(in Chinese)[孔金星,胡锟,何宁,等.冷却润滑对纯铁车削刀具磨损的影响机理[J].摩擦学学报,2015,35(4):378-385].doi:10.16078/j.tribology.2015.04.004.
    [7]Weinert K,Inasaki I,Sutherland J W T.Dry machining and minimum quantity lubrication[J].CIRP Annals-Manufacturing Technology,2004,53(2):511-537.doi:10.1016/S0007-8506(07)60027-4.
    [8]Zhu Yajing.Fundamental research on internal cooling MQL milling process[D].Zhenjiang:Jiangsu University of Science and Technology,2017(in Chinese)[祝亚京.内冷式MQL铣削工艺基础研究[D].镇江:江苏科技大学,2017].
    [9]Xiong Weiqiang,Luo Jinlong.Inner cooling cutter with liquid supply structure[P].China:201320113044.6,2013-08-28(in Chinese)[熊伟强,罗金龙.一种具有供液结构的内冷车刀[P].中国专利:201320113044.6,2013-08-28].
    [10]Rahim E A,Ibrahim M R,Rahim A A.Experimental investigation of minimum quantity lubrication(MQL)as a sustainable cooling technique[J].Procedia CIRP,2015,26:351-354.doi:10.1016/j.procir.2014.07.029.
    [11]Matthew Siniawsk,Chris Bowman.Metalworking fluids:finding green in the manufacturing process[J].Industrial Lubrication and Tribology,2009,61(2):60-66.doi:10.1108/00368790910940374.
    [12]Shu Shengrong.Design and analysis of internal cooling intelligent turning tool and its experimental research[D].Harbin:Harbin Institute of Technology,2014(in Chinese)[舒盛荣.内冷式智能车刀设计与分析及其实验研究[D].哈尔滨:哈尔滨工业大学,2014].
    [13]Sreejith P S,Ngoi B K A.Dry machining:machining of the future[J].Journal of Materials Processing Technology,2010,101(1):287-291.doi:10.1016/S0924-0136(00)00445-3.
    [14]Wu Z,Yang Y,Su C,et al.Development and prospect of cooling technology for dry cutting tools[J].International Journal of Advanced Manufacturing Technology,2016,88(8):1-11.doi:10.1007/s00170-016-8842-7.
    [15]Zheng Guangming,Cheng Xiang,Yang Xianhai,et al.Sliding wear properties and cutting performance of Al2O3/TiCN coated tools[J].Tribology,2018,38(3):356-363(in Chinese)[郑光明,程祥,杨先海,等.Al2O3/TiCN涂层刀具的滑动磨损性能及切削性能研究[J].摩擦学学报,2018,38(3):356-363].doi:10.16078/j.tribology.2018.03.014.
    [16]Li Tianjian,Liu Wenbo,Wu Tao.Structure and thermal composite analysis method and application of internal cooling tool design[J].Computer Integrated Manufacturing System,2018,24(4):886-893(in Chinese)[李天箭,刘文博,吴涛.内冷车刀设计的结构和热复合分析方法及应用[J].计算机集成制造系统,2018,24(4):886-893].doi:10.13196/j.cims.2018.04.008.
    [17]Attanasio A,Gelfi M,Giardini C,et al.Minimal quantity lubrication in turning:Effect on tool wear[J].Wear,2005,260(3):333-338.doi:10.1016/j.wear.2005.04.024.
    [18]Wang Chunxiu,Peng Zhen,Wang Zhiyun,et al.Internal cooling cutter[P].China:201520044250.5,2015-07-01(in Chinese)[王春秀,彭震,王云志,等.一种内冷车刀[P].中国专利:201520044250.5,2015-07-01].
    [19]Ma Hongxiao,Zhang Xiaojian,Yu Anjiang,et al.A new type of internal cooling tool with cyclic cooling function[P].China:201711006925.7,2018-01-19(in Chinese)[马洪啸,张小俭,于安江,等.一种具有循环冷却功能的新型内冷车刀[P].中国专利:201711006925.7,2018-01-19].
    [20]Chai L,Xia G,Wang H.Numerical study of laminar flow and heat transfer in microchannel heat sink with offset ribs on sidewalls[J].Applied Thermal Engineering,2016,92:32-41.doi:10.1016/j.applthermaleng.2015.09.071.
    [21]Ma Chenbo,Sun Jianjun,Zheng Wei,et al.An efficient cooling of internal cooling blades and tools[P].China:201811019449.7,2018-11-23(in Chinese)[马晨波,孙见君,郑伟,等.一种高效冷却的内冷刀片及刀具[P].中国专利:201811019449.7,2018-11-23].
    [22]Raja Kuppusamy N,Saidur R,Ghazali N N N,et al.Numerical study of thermal enhancement in micro channel heat sink with secondary flow[J].International Journal of Heat and Mass Transfer,2014,78:216-223.doi:10.1016/j.ijheatmasstransfer.2014.06.072.
    [23]Sun Guoxiang,Li Yongbo,Wang Xiaochan,et al.CFD simulation and experiment of droplet distribution characteristics of knapsack sprayer[J].Journal of Agricultural Engineering,2012,28(20):73-79(in Chinese)[孙国祥,李永博,汪小旵,等.背负式喷雾器雾滴分布特性的CFD模拟与试验[J].农业工程学报,2012,28(20):73-79].
    [24]Yue Caixu,Gao Haining,Liu Xianli,et al.Analytical prediction of part dynamics and process damping for machining stability analysis[J].Procedia CIRP,2018,72:1463-1468.doi:10.1016/j.procir.2018.03.247.
    [25]Du Hongyi,He Lin,Zhao Xianfeng,et al.Ansys-based internalcooling tool flow thermo-mechanical coupling analysis(I)[J].Modern Manufacturing Engineering,2016(6):13-16(in Chinese)[杜宏益,何林,赵先锋,等.基于ANSYS的内冷刀具流热固耦合分析(上)[J].现代制造工程,2 0 1 6(6):1 3-1 6].d o i:10.16731/j.cnki.1671-3133.2016.06.004.
    [26]Wang Mulan,Zuo Jianming,Zhu Hao,et al.Three-dimensi-onal finite element modeling and dynamic simulation of high-speed cutting temperature field[J].Modern Manufacturing Engineering,2010(2):80-84(in Chinese)[汪木兰,左健民,朱昊,等.高速切削温度场的三维有限元建模与动态仿真[J].现代制造工程,2010(2):80-84].doi:10.3969/j.issn.1671-3133.2010.02.021.
    [27]Shanghai metal cutting technology association.Metal cutting manual[M].Shanghai:Shanghai Science and Technology Press,2004:58-62(in Chinese)[上海市金属切削技术协会.金属切削手册[M].上海:上海科学技术出版社,2004:58-62].
    [28]Mamalis A G,Horváth M,Branis A S,et al.Finite element simulation of chip formation in orthogonal metal cutting[J].Journal of Materials Processing Tech,2001,110(1):19-27.doi:10.1016/S0924-0136(00)00861-X.
    [29]Hao Yongxing,Chen Ziyi,Feng Meiling,et al.Modal analysis and optimization of shield hob based on ABAQUS[J].Tool Technology,2017,51(10):47-50(in Chinese)[郝用兴,陈子义,冯梅玲,等.基于ABAQUS的盾构滚刀模态分析及优化[J].工具技术,2017,51(10):47-50].doi:10.3969/j.issn.1000-7008.2017.10.012.
    [30]Chen Xiaodong,Yang Weizhi,Zhang Kai.Finite element analysis and calculation of machine tool hot deformation[J].Machine Tool and Hydraulic,2011,39(5):15-17(in Chinese)[张小栋,杨卫志,张凯.机床刀具热变形有限元分析与计算[J].机床与液压,2011,39(5):15-17].doi:10.3969/j.issn.1001-3881.2011.05.005.
    [31]Pervaiz S,Deiab I,Wahba E,et al.A numerical and experimental study to investigate convective heat transfer and associated cutting temperature distribution in single point turning[J].The International Journal of Advanced Manufacturing Technology,2018,94:897-910.doi:10.1007/s00170-017-0975-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700