微纳螺旋凹槽结构检测光子自旋角动量
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Detection of Optical Spin Angular Momentum with Micro-nano Helical Groove Structure
  • 作者:何文 ; 刘爱萍 ; 王琴
  • 英文作者:HE Wen;LIU Ai-ping;WANG Qin;College of Telecommunications and Information Engineering,Nanjing University of Posts and Telecommunications;
  • 关键词:表面等离激元 ; 自旋角动量 ; 有限元方法 ; 螺旋凹槽结构 ; 偏振 ; 消光比
  • 英文关键词:Surface plasmons;;Spin angular momentum;;Finite element method;;Spiral groove structure;;Polarization;;Extinction ratio
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:南京邮电大学通信与信息工程学院;
  • 出版日期:2019-02-27 09:09
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(No.11504183)~~
  • 语种:中文;
  • 页:GZXB201904009
  • 页数:7
  • CN:04
  • ISSN:61-1235/O4
  • 分类号:56-62
摘要
建立螺旋凹槽结构模型,具有不同自旋角动量的光束入射到该结构后激发表面等离激元,螺旋凹槽结构的螺旋性与光子自旋角动量耦合,使得不同自旋偏振光激发的表面等离激元具有不同的强度分布.通过螺旋凹槽激发的表面等离激元的强度分布获得入射光的自旋角动量.利用有限元方法计算了左旋偏振光与右旋偏振光激发的表面等离激元在螺旋凹槽中心的光场强度比,最大消光比达到168,实现对光子的自旋角动量的检测.在数值仿真中,分析了不同入射光波长的消光比,入射光波长在600~740nm范围内消光比高于50,其中入射光波长为670nm时的检测效果最佳;此外,研究螺旋凹槽结构参量对消光比的影响,当凹槽宽度为200nm,凹槽深度为70nm,匝数为2时,消光比最大,螺旋凹槽结构检测光子自旋角动量的能力最强.该研究可为集成光学中光子自旋角动量的检测提供一种新途径.
        A model of helical groove structure is proposed.The surface plasmons excited by the incident light with different spin angular momentum have different intensity distributions on the structure,attributed to the coupling of the helical groove structure and the optical spin angular momentum.So the spin angular momentum of incident light can be obtained by the intensity distribution of surface plasmons excited by the helical groove structure.The finite element method is used to calculate the extinction ratio of the surface plasmon excited by the left-handed polarized light and the right-handed polarized light at the center of the spiral groove.The maximum extinction ratio reaches 168,which can distinguish the photons with different spin angular momentum.In the numerical simulation,the intensity extinction ratio for different incident wavelengths is analyzed.The extinction ratio of the incident light wavelength in the range of 600~740 nm is above 50,with a best extinction ratio in the wavelength of 670 nm.In addition,the effect of the helical groove structure parameters on the extinction ratio is illustrated.And the maximum extinction ratio is obtained with the groove width of 200 nm,the groove depth of 70 nm,and the turn number of 2,at this time,the spiral groove structure has the best ability to detect the optical spin angular momentum.This work could provide a new approach to detect the optical spin angular momentum in integrated optics.
引文
[1]EBBESEN T W,LEZEC H J,GHAEMI H F,et al.Extraordinary optical transmission through sub-wavelength hole arrays[J].Nature,1998,391(6):667-669.
    [2]LEZEC H J,DEGIRON A,DEVAUX E,et al.Beaming light from a subwavelength aperture[J].Science,2002,297(5582):820-822.
    [3]LAKOWICZ J R.Plasmonics in biology and plasmon-controlled fluorescence[J].Plasmonics,2006,1(1):5-33.
    [4]ALTEWISCHER E,EXTER M P,WOERDMAN J P.Plasmon-assisted transmission of entangled photons[J].Nature,2002,418(6895):304-306.
    [5]LI M,ZOU C L,REN X F,et al.Transmission of photonic quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide[J].Nano Letters,2015,15(4):2380-2384.
    [6]BARNES W L,DEREUX A,EBBESEN T W.Surface plasmon subwavelength optics[J].Nature,2003,424(6950):824-830.
    [7]NI X J,WONG Z J,MREJEN M,et al.An ultrathin invisibility skin cloak for visible light[J].Science,2015,349(6254):1310-1314.
    [8]PADGETT M,BOWMAN R.Tweezers with a twist[J].Nature Photonics,2011,5(6):343-348.
    [9]FANG N,HYESOG L,SUN C,et al.Sub-diffraction-limited optical imaging with a silver superlens[J].Science,2005,308(5721):534-537.
    [10]REN X F,GUO G P,HUANG Y F,et al.Plasmon-assisted transmission of high-dimensional orbital angularmomentum entangled state[J].Europhysics Letters,2006,76:753-759.
    [11]LIU A P,RUI G H,REN X F,et al.Encoding photonic angular momentum information onto surface plasmon polaritons with plasmonic lens[J].Optics Express,2012,20(22):24151.
    [12]OZBAY E.Plasmonics:merging photonics and electronics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
    [13]MARQUIER F,SAUVAN C,GREFFET J J.Revisiting quantum optics with surface plasmons and plasmonic resonators[J].ACS Photonics,2017,4(9):2091-2101.
    [14]XU D,XIONG X,WU L,et al.Quantum plasmonics:new opportunity in fundamental and applied photonics[J].Advances in Optics and Photonics,2018,10(4):703-756.
    [15]LIN J,MUELLER J P B,WANG Q,et al.Polarization-controlled tunable directional coupling of surface plasmon polaritons[J].Science,2013,340(6130):331-334.
    [16]KUROSAWA H,CHOI B,SUGIMOTO Y,et al.High-performance metasurface polarizers with extinction ratios exceeding 12000[J].Optics Express,2017,25(4):4446-4455.
    [17]LIU A P,XIONG X,REN X F,et al.Detecting orbital angular momentum through division-of-amplitude interference with a circular plasmonic lens[J].Scientific Reports,2013,3(1):2402.
    [18]GORODETSKI Y,NIV A,KLEINER V,et al.Observation of the spin-based plasmonic effect in nanoscale structures[J].Physical Review Letters,2008,101(4):043903.
    [19]CHO S W,PARK J,LEE S Y,et al.Coupling of spin and angular momentum of light in plasmonic vortex[J].Optics Express,2012,20(9):10083.
    [20]AIRONG Z,ALINE P,NESSIM J,et al.Spin-orbital angular momentum tomography of a chiral plasmonic lens using leakage radiation microscopy[J].Optics Letters,2018,43(8):1918-1921.
    [21]RUI G H,NELSON R L,ZHAN Q W.Circularly polarized unidirectional emission via a coupled plasmonic spiral antenna[J].Optics Letters,2011,36(23):4533-4535.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700