蒙阴金伯利岩中磷灰石的矿物学特征及其成因意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mineralogical Characteristics of Apatites in the Mengyin Kimberlite in Shandong Province and Their Genetic Significances
  • 作者:雷雪英 ; 杨志军 ; 向正娇
  • 英文作者:LEI Xue-ying;YANG Zhi-jun;XIANG Zheng-jiao;School of Earth Sciences and Engineering Sun Yat-sen University;Guangdong Provincial Key Lab of Geological Processes and Mineral Resource Survey;
  • 关键词:磷灰石 ; 组成 ; 结构 ; 金伯利岩 ; 岩浆演化 ; 山东蒙阴地区
  • 英文关键词:apatite;;composition;;texture;;kimberlite;;magma evolution;;the Mengyin area in Shandong Province
  • 中文刊名:KYDH
  • 英文刊名:Bulletin of Mineralogy,Petrology and Geochemistry
  • 机构:中山大学地球科学与工程学院;广东省地质过程与矿产资源探查重点实验室;
  • 出版日期:2019-01-23 08:31
  • 出版单位:矿物岩石地球化学通报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(41373025,41073021)
  • 语种:中文;
  • 页:KYDH201902022
  • 页数:9
  • CN:02
  • ISSN:52-1102/P
  • 分类号:213-221
摘要
为探讨山东蒙阴金伯利岩的成因及其演化过程,对其中的磷灰石进行了矿物学及地球化学研究。SEM、EPMA和LA-ICP-MS测试结果表明,磷灰石可分为早期和基质同期两类;早期磷灰石常以较大(100~210μm)的半自形浑圆状出现在金伯利岩捕掳体内;具有特征CL图像和同心的、无序的明暗环带;Ca、P含量高,Sr、Si含量低,Ca、P分别与Sr、Si呈负相关关系;Th、U、Tb、Y含量高于原始地幔和基质同期磷灰石,LREE轻微亏损,HREE轻微富集;具明显负Eu异常,暗示其形成于还原环境。金伯利岩的富矿性与早期磷灰石有一定正相关性。基质同期磷灰石赋存在金伯利岩基质中,粒径变化较大(几微米到380μm),常呈放射状、填隙状等;无特征CL图像,Sr、Si含量高,Ca、P含量低;Ba、La、Sr含量远高于原始地幔和早期磷灰石,LREE明显富集,HREE强烈亏损;其微量元素配分模式指示金伯利岩初始岩浆的微量元素组成特征。
        In order to figure out the genesis of the Mengyin kimberlite and evolution processes of the kimberlite magma, the mineralogy and geochemistry of apatites in the Mengyin kimberlite, Shandong Province have been studied in this paper. The SEM, EPMA and LA-ICP-MS analytical results show that apatites can be classified into two groups of the early apatites and matrix contemporaneous apatites. The early apatites, generally with sizes varying from 100 μm to 210 μm, occurred as subhedral crystals in xenoliths of the kimberlite. Their characteristic CL images show concentric and chaotic bands of light and shade. They contain high Ca, P contents and low Sr, Si contents, with negative correlations between Ca and Sr, P and Si, respectively. Their Th, U, Tb and Y contents are higher than those of the primitive mantle and matrix contemporaneous apatites. Their REE patterns are characterized with slight depletion of LREE, slight enrichment of HREE, and obviously negative Eu anomalies. The matrix contemporaneous apatites generally occurred as radial and interstitial crystals in the matrix of kimberlite, with their grain sizes varying from a few microns to 380 μm. There is no characteristic for their CL images. They have relatively high Sr, Si contents and low Ca, P contents. Their Ba, La, and Sr contents are much higher than those of the primitive mantle and early apatites. Furthermore, their REE patterns are characterized with the obviously enriched LREE but strongly depleted HREE. The early apatites have negative Eu anomalies, implying that they were formed in a reduced environment. Meanwhile, there is a certain positive correlation between the ore-bearing potential of kimberlite and the occurrence of early apatites. The trace element distribution patterns of the matrix contemporaneous apatites indicate that they have similar characteristics of trace element compositions of the primitive kimberlite magma.
引文
Abersteiner A, Giuliani A, Kamenetsky V S, Phillips D. 2017. Petrographic and melt-inclusion constraints on the petrogenesis of a magmaclast from the Venetia kimberlite cluster, South Africa. Chemical Geology, 455: 331-341
    Abersteiner A, Kamenetsky V S, Kamenetsky M, Goemann K, Ehrig K, Rodemann T. 2018. Significance of halogens (F, Cl) in kimberlite melts: Insights from mineralogy and melt inclusions in the Roger pipe (Ekati, Canada). Chemical Geology, 478: 148-163
    Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P,(ed.). Rare Earth Element Geochemistry. Amsterdam: Elservier, 63-114
    Campbell L S, Henderson P. 1997. Apatite paragenesis in the Bayan Obo REE-Nb-Fe ore deposit, Inner Mongolia, China. Lithos, 42(1-2): 89-103
    Castillo-Oliver M, Galí S, Melgarejo J C, Griffin W L, Belousova E, Pearson N J, Watangua M, O'Reilly S Y. 2016. Trace-element geochemistry and U-Pb dating of perovskite in kimberlites of the Lunda Norte province (NE Angola): Petrogenetic and tectonic implications. Chemical Geology, 426: 118-134
    Donnelly C L, Griffin W L, Yang J H, O'Reilly S Y, Li Q L, Pearson N J, Li X H. 2012. In situ U-Pb Dating and Sr-Nd Isotopic Analysis of Perovskite: Constraints on the Age and Petrogenesis of the Kuruman Kimberlite Province, Kaapvaal Craton, South Africa. Journal of Petrology, 53(12): 2497-2522
    Fedortchouk Y, Canil D. 2004. Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. Journal of Petrology, 45(9): 1725-1745
    Giuliani A, Phillips D, Kamenetsky V S, Goemann K. 2016. Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos, 240-243: 189-201
    Giuliani A, Soltys A, Phillips D, Kamenetsky V S, Maas R, Goemann K, Woodhead J D, Drysdale R N, Griffin W L. 2017. The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chemical Geology, 455: 342-356
    Giuliani A. 2018. Insights into kimberlite petrogenesis and mantle metasomatism from a review of the compositional zoning of olivine in kimberlites worldwide. Lithos, 312-313: 322-342
    Heaman L M, Kjarsgaard B A, Creaser R A. 2003. The timing of kimberlite magmatism in North America: implications for global kimberlite genesis and diamond exploration. Lithos, 71(2-4): 153-184
    Jones A P, Wyllie P J. 1984. Minor elements in perovskite from kimberlites and distribution of the rare earth elements: An electron probe study. Earth and Planetary Science Letters, 69(1): 128-140
    Kaur G, Mitchell R H. 2013. Mineralogy of the P2-West ‘Kimberlite’, Wajrakarur kimberlite field, Andhra Pradesh, India: kimberlite or lamproite? Mineralogical Magazine, 77(8): 3175-3196
    Kaur G, Mitchell R H. 2016. Mineralogy of the P-12 K-Ti-richterite diopside olivine lamproite from Wajrakarur, Andhra Pradesh, India: implications for subduction-related magmatism in eastern India. Mineralogy and Petrology, 110(2-3): 223-245
    Kjarsgaard B A, Heaman L M, Sarkar C, Pearson D G. 2017. The North America mid-Cretaceous kimberlite corridor: Wet, edge-driven decompression melting of an OIB-type deep mantle source. Geochemistry, Geophysics, Geosystems, 18(7): 2727-2747
    Konzett J, Krenn K, Rubatto D, Hauzenberger C, Stalder R. 2014. The formation of saline mantle fluids by open-system crystallization of hydrous silicate-rich vein assemblages -Evidence from fluid inclusions and their host phases in MARID xenoliths from the central Kaapvaal Craton, South Africa. Geochimica et Cosmochimica Acta, 147: 1-25
    Kopylova M G, Mogg T, Smith B S. 2010. Mineralogy of the snap lake kimberlite, northwest territories, Canada, and compositions of phlogopite as records of its crystallization. The Canadian Mineralogist, 48(3): 549-570
    Malarkey J, Pearson D G, Kjarsgaard B A, Davidson J P, Nowell G M, Ottley C J, Stammer J. 2010. From source to crust: Tracing magmatic evolution in a kimberlite and a melilitite using microsample geochemistry. Earth and Planetary Science Letters, 299(1-2): 80-90
    McDonough W F, Sun S S, Ringwood A E, Jagoutz E, Hofmann A W. 1992. Potassium, rubidium, and cesium in the Earth and Moon and the evolution of the mantle of the Earth. Geochimica et Cosmochimica Acta, 56(3): 1001-1012
    Mitchell R H. 1986. Kimberlites-Mineralogy, Geochemistry, and Petrology). New York: Springer
    Mitchell R H. 2008. Petrology of hypabyssal kimberlites: Relevance to primary magma compositions. Journal of Volcanology and Geothermal Research, 174(1-3): 1-8
    Robles-Cruz S E, Watangua M, Isidoro L, Melgarejo J C, Galí S, Olimpio A. 2009. Contrasting compositions and textures of ilmenite in the Catoca kimberlite, Angola, and implications in exploration for diamond. Lithos, 11(S2): 966-975
    Sharygin I S, Litasov K D, Shatskiy A, Golovin A V, Ohtani E, Pokhilenko N P. 2015. Melting phase relations of the Udachnaya-East Group-I kimberlite at 3.0-6.5 GPa: Experimental evidence for alkali-carbonatite composition of primary kimberlite melts and implications for mantle plumes. Gondwana Research, 28(4): 1391-1414
    Sobolev N V, Schertl H P, Neuser R D, Tomilenko A A, Kuzmin D V, Logvinova A M, Tolstov A V, Kostrovitsky S I, Yakovlev D A, Oleinikov O B. 2017. Formation and evolution of hypabyssal kimberlites from the Siberian craton: Part 1-New insights from cathodoluminescence of the carbonates. Journal of Asian Earth Sciences, 145: 670-678
    Soltys A, Giuliani A, Phillips D. 2018. A new approach to reconstructing the composition and evolution of kimberlite melts: A case study of the archetypal Bultfontein kimberlite (Kimberley, South Africa). Lithos, 304-307: 1-15
    Sun J, Liu C Z, Tappe S, Kostrovitsky S I, Wu F Y, Yakovlev D, Yang Y H, Yang J H. 2014. Repeated kimberlite magmatism beneath Yakutia and its relationship to Siberian flood volcanism: Insights from in situ U-Pb and Sr-Nd perovskite isotope analysis. Earth and Planetary Science Letters, 404: 283-295
    Willcox A, Buisman I, Sparks R S J, Brown R J, Manya S, Schumacher J C, Tuffen H. 2015. Petrology, geochemistry and low-temperature alteration of lavas and pyroclastic rocks of the kimberlitic Igwisi Hills volcanoes, Tanzania. Chemical Geology, 405: 82-101
    Zhu R Z, Ni P, Ding J Y, Wang D Z, Ju Y, Kang N, Wang G G. 2017. Petrography, chemical composition, and raman spectra of chrome spinel: constraints on the diamond potential of the no. 30 pipe Kimberlite in Wafangdian, North China craton. Ore Geology Reviews, 91: 896-905
    Zurevinski S E, Mitchell R H. 2011. Highly evolved hypabyssal kimberlite sills from Wemindji, Quebec, Canada: insights into the process of flow differentiation in kimberlite magmas. Contributions to Mineralogy and Petrology, 161(5): 765-776
    常丽华, 曹林, 高福红. 2009. 火成岩鉴定手册. 北京: 地质出版社
    陈耀明, 杨志军, 黄珊珊, 雷雪英, 李晓潇, 曾璇. 2018. 蒙阴金伯利岩中钙钛矿的微组构及其地质意义. 矿物岩石地球化学通报, 1-10
    池际尚, 路凤香, 赵磊. 1996. 华北地台金伯利岩及古生代岩石圈地幔特征. 北京: 科学出版社, 33-54
    刘羽. 1992. 几种成因类型磷灰石的矿物学研究. 武汉化工学院学报, 14(2): 16-21
    宁思远, 汪方跃, 薛纬栋, 周涛发. 2017. 长江中下游铜陵地区宝山岩体地球化学研究. 地球化学, 46(5): 397-412
    汪方跃, 葛粲, 宁思远, 聂利青, 钟国雄, White N C. 2017. 一个新的矿物面扫描分析方法开发和地质学应用. 岩石学报, 33(11): 3422-3436
    杨志军, 黄珊珊, 陈耀明, 李晓潇, 曾璇, 周文秀. 2016. 金伯利岩演化过程及金刚石含矿性评价的研究进展. 地球科学进展, 31(7): 700-707
    杨志军, 黄珊珊, 陈耀明, 雷雪英, 李晓潇, 曾璇. 2018. 山东蒙阴金伯利岩中尖晶石族矿物特征及其地质意义. 矿物岩石地球化学通报, 37(2): 168-179, 371
    张培强. 2006. 山东金伯利岩岩管成因. 博士学位论文. 北京: 中国地质大学(北京)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700