单圆双线地铁隧道基底粉细砂层动力响应分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic Response of Silty Fine Sand Layer Beneath Single-hole Double-track Subway Tunnel
  • 作者:马学勇 ; 张巍 ; 任家涛 ; 朱守兵 ; 朱鸿鹄
  • 英文作者:MA Xueyong;ZHANG Wei;REN Jiatao;ZHU Shoubing;ZHU Honghu;School of Earth Sciences and Engineering,Nanjing University;
  • 关键词:单圆双线地铁 ; 盾构隧道 ; 粉细砂 ; 动力响应 ; 液化
  • 英文关键词:one-hole double-track subway;;shield tunnel;;fine silty sand;;dynamic response;;liquefaction
  • 中文刊名:DZXK
  • 英文刊名:Journal of Disaster Prevention and Mitigation Engineering
  • 机构:南京大学地球科学与工程学院;
  • 出版日期:2019-02-15
  • 出版单位:防灾减灾工程学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金重点项目(41230636);国家自然科学基金项目(40902076);; 江苏省自然科学基金项目(BK20141224)资助
  • 语种:中文;
  • 页:DZXK201901015
  • 页数:11
  • CN:01
  • ISSN:32-1695/P
  • 分类号:110-120
摘要
以南京地铁10号线过江段江北大堤附近典型截面为例,分别考虑了单线通行工况与会车8s、会车12s及会车16s3种典型会车工况,建立了隧道-土体有限元模型,分析了单圆双线隧道基底粉细砂层动力响应。结果表明,隧道基底粉细砂层加速度峰值随垂直深度增加而呈指数型衰减,到达23m深度时,4种工况加速度峰值已非常接近。基底下卧层土体最大位移随深度呈线性减小趋势,考虑各工况下各深度位置最大竖向位移,会车8s工况>会车16s工况>会车12s工况>单车8s工况。列车动荷载所激发的粉细砂超静孔隙水压力约为静水压力的1%。粉细砂层最大超孔压随基底深度呈指数型衰减趋势。粉细砂层内最大孔隙水压力与总应力比值小于1,隧道基底粉细砂层不会发生液化。该结果可用于调控隧道控制截面位置基底粉细砂层动力响应与可液化性研究。
        A typical profile of the cross-river section of Nanjing Metro Line 10 near the North Yangtze River dike was taken as an example.Single running scenario and three typical meeting scenarios,namely 8-s meeting,12-s meeting,and 16-s meeting scenarios were considered,and a tunnel-soil finite element model was developed to analyze the dynamical response of the silty fine sand layer beneath the single-hole double-track tunnel.Results showed that the peak acceleration values of the fine silty sand decayed exponentially with almost the same value when reaching a depth of 23 mfor all the four scenarios.The maximal displacements of the soil layer beneath the tunnel decreased linearly along the depth.The maximal vertical displacement was observed for the 8-s meeting scenario,followed by the 16-s,12-s meeting,and the 8-s single running scenarios.Moreover,the excessive pore water pressure induced by the dynamic load of the subway train was only a hundredth of the static pore water pressure.The maximal pore water pressures also exhibited an exponential attenuation trend.Finally,the ratio of the maximal pore water pressure to the total stress was less than 1,meaning that liquefaction would not occur in the fine silty sand layer beneath the tunnel.The investigation results can be used to regulate the dynamic response and the liquidability of the fine silty sand layer beneath the tunnel at controlled sections.
引文
[1]王怀东,张旭辉,黄波.地铁长距离过江盾构隧道合理断面形式的研究[J].现代隧道技术,2013,50(6):139-146.Wang H D,Zhang X H,Huang B.Study of a reasonable cross section type for a long-distance shield tunnel crossing under a river[J].Modern Tunneling Technology,2013,50(6):139-146.(in Chinese)
    [2]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-28.Pan Ch Sh,Xie Zh G.Measurement and subway analysis of vibrations caused by passing trains in running tunnel[J].Civil Engineering Journal,1990,23(2):21-28.(in Chinese)
    [3]潘昌实,李德武,谢正光.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995,14(4):29-34.Pan Ch Sh,Li D W,Xie Zh G.Vibration effects of Beijing subway traffic on the environment[J].Journal of Vibration and Shock,1995,14(4):29-34.(in Chinese)
    [4]唐益群,栾长青,张曦,等.地铁振动荷载作用下隧道土体变形数值模拟[J].地下空间与工程学报,2008,4(1):105-110.Tang Y Q,Luan Ch Q,Zhang X,et al.Numerical simulation of saturated soft clay’s deformation around tunnel under subway vibrational loading[J].Chinese Journal of Underground Space and Engineering,2008,4(1):105-110.(in Chinese)
    [5]李亮,张丙强,杨小礼.高速列车振动荷载下大断面隧道结构动力响应分析[J].岩石力学与工程学报,2005,24(23):4 259-4 265.Li L,Zhang B Q,Yang X L.Analysis of dynamic response of large cross-section tunnel under vibrating load induced by high speed train[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(23):4 259-4 265.(in Chinese)
    [6]莫海鸿,邓飞皇,王军辉.营运期地铁盾构隧道动力响应分析[J].岩石力学与工程学报,2006,25(增2):3 507-3 512.Mo H H,Deng F H,Wang J H.Analysis of dynamic responses of shield tunnel during metro operation[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(Sup 2):3 507-3 512.(in Chinese)
    [7]Nejati H R,Ahmadi M,Hashemolhosseini H.Numerical analysis of ground surface vibration induced by underground train movement[J].Tunnelling and Underground Space Technology,2012,29(5):1-9.
    [8]Wolf S.Potential low frequency ground vibration(<6.3 Hz)impacts from underground LRT operations[J].Journal of Sound&Vibration,2003,267(3):651-661.
    [9]王建炜,金先龙,张伟伟.公路与轨道交通载荷作用下隧道动力响应分析[J].振动与冲击,2012,31(21):46-49.Wang J W,Jin X L,Zhang W W.Dynamic response analysis of a tunnel under traffic flow loads and train loads[J].Journal of Vibration and Shock,2012,31(21):46-49.(in Chinese)
    [10]李明宇,刘国彬,胡蒙达,等.运营地铁盾构隧道结构振动响应实测分析[J].铁道学报,2011,33(6):88-93.Li M Y,Liu G B,Hu M D,et al.Field measurement and analysis of structural vibration response in the metro shield tunnel[J].Journal of the China Railway Society,2011,33(6):88-93.(in Chinese)
    [11]杨觅,门玉明,袁立群,等.地裂缝环境下不同隧道型式的地铁振动响应数值分析[J].防灾减灾工程学报,2016,36(2):188-195.Yang M,Men Y M,Yuan L Q,et al.Numerical analysis of subway vibration responses for different tunnel types in ground fissure areas[J].Journal of Disaster Prevention and Mitigation Engineering,2016,36(2):188-195.(in Chinese)
    [12]Yaseri A,Bazyar M H,Hataf N.3Dcoupled scaled boundary finite-element/finite-element analysis of ground vibrations induced by underground train movement[J].Computers&Geotechnics,2014,60(1):1-8.
    [13]Lai J,Wang K,Qiu J,et al.Vibration response characteristics of the cross tunnel structure[J].Shock and Vibration,2016(5):1-16.
    [14]He P P,Cui Z D.Dynamic response of a thawing soil around the tunnel under the vibration load of subway[J].Environmental Earth Sciences,2015,73(5):2 473-2 482.
    [15]Xue F.Dynamic responses of subway tunnel in clay stratum to moving loads[J].Arabian Journal for Science&Engineering,2017,42(3):1 327-1 340.
    [16]胡豹,金先龙,占昌宝,等.地铁车辆交会对单洞双线隧道影响的数值模拟[J].振动与冲击,2015,34(24):32-39.Hu B,Jin X L,Zhan Ch B,et al.Numerical simulation of the nonstop crossing of opposite subways in a single bore tunnel[J].Journal of Vibration and Shock,2015,34(24):32-39.(in Chinese)
    [17]周镜.岩土工程中的几个问题[J].岩土工程学报,1999,21(1):2-8.Zhou J.Some cases in geotechnical engneering[J].Chinese Journal of Geotechnical Engineering,1999,21(1):2-8.(in Chinese)
    [18]宫全美,周顺华,王炳龙.地铁隧道地基土孔隙水压力变化及液化性研究[J].岩土工程学报,2004,26(2):290-292.Gong Q M,Zhou Sh H,Wang B L.Variation of pore pressure and liquefaction of soil in metro[J].Chinese Journal of Geotechnical Engineering,2004,26(2):290-292.(in Chinese)
    [19]申跃奎.地铁激励下振动的传播规律及建筑物隔振减振研究[D].上海:同济大学,2007.Shen Y K.Study on the propagation laws of subwayinduced vibration and isolation or reduction methods of building vibration[D].Shanghai:Tongji University,2007.(in Chinese)
    [20]邵冠慧,赵晓豹,乔恒君,等.地铁扣件和钢轨对运营期列车荷载的动态响应[J].地下空间与工程学报,2015,11(5):1 228-1 234.Shao G H,Zhao X B,Qiao H J,et al.Dynamic response of fastener and rail under the train load in operating period[J].Chinese Journal of Underground Space and Engineering,2015,11(5):1 228-1 234.(in Chinese)
    [21]刘鸿文.材料力学[M].北京:高等教育出版社,2011:33-37.Liu H W.Mechanics of materials[M].Beijing:Higher Education Press,2011:33-37.(in Chinese)
    [22]刘维宁,马蒙,等.地铁列车振动环境影响的预测、评估与控制[M].北京:科学出版社,2014:60-61.Liu W N,Ma M,et al.Metro train induced environmental vibration:prediction,evaluation and control[M].Beijing:Science Press,2014:60-61.(in Chinese)
    [23]高广运,陈功奇,李佳.高速列车荷载作用下横观各向同性饱和地基动力特性的数值分析[J].岩石力学与工程学报,2014,33(1):189-198.Gao G Y,Chen G Q,Li J.Numerical analysis of dynamic characteristic of transversely isotropic saturated soil foundation subjected to high-speed train load[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):189-198.(in Chinese)
    [24]Chai J C,Miura N.Traffic-load-induced permanent deformation of road on soft subsoil[J].Journal of Geotechnical an Geoenvironmental Engineering,2002,128(11):907-916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700