用户名: 密码: 验证码:
电-多相臭氧催化技术处理金刚烷胺制药废水
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on electrochemical heterogeneous catalytic ozonation process for treatment of amantadine pharmaceutical wastewater
  • 作者:马富军 ; 李新洋 ; 宗博洋 ; 于晓华 ; 孙绍斌 ; 姚宏
  • 英文作者:MA Fu-jun;LI Xin-yang;ZONG Bo-yang;YU Xiao-hua;SUN Shao-bin;YAO Hong;School of Civil Engineering and Architecture,Beijing Jiaotong University;College of Environmental Science and Engineering,Tongji University;
  • 关键词:金刚烷胺 ; 制药废水 ; 电-多相臭氧催化 ; 二氧化钛
  • 英文关键词:amantadine;;pharmaceutical wastewater;;electrochemical heterogeneous catalytic ozonation;;titanium dioxide
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京交通大学土木建筑工程学院;同济大学环境科学与工程学院;
  • 出版日期:2018-10-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:中央基本科研业务费(2017JBM342;2016JBZ008);; 中国铁路总公司科技研究开发计划重点课题(2017Z003-F)
  • 语种:中文;
  • 页:ZGHJ201810014
  • 页数:7
  • CN:10
  • ISSN:11-2201/X
  • 分类号:115-121
摘要
采用电-多相臭氧催化(E-catazone)技术处理高COD、高含盐、难生化的金刚烷胺制药废水.对比研究电-多相臭氧催化、多相臭氧催化(Catazone)、电催化氧化(EO)对金刚烷胺制药废水的处理效果,在此基础上进一步研究了电流密度、pH值以及气相O_3浓度对电-多相臭氧催化技术处理效果的影响,同时优化实验条件.实验结果表明,在原水pH值为12.5,电流密度为15mA/cm~2,O_3进气流速0.4L/min,O_3浓度为60mg/L的条件下,经过60min反应,电-多相臭氧催化技术获得了62%的COD去除和44%的总有机碳(TOC)去除,其效果显著优于多相臭氧催化(COD 44%,TOC 29%)与电催化氧化(COD13%,TOC 17%);同时,电-多相臭氧催化不仅氧化能力强,而且氧化速率快,获得的伪一级COD去除速率常数k是多相臭氧催化和电催化氧化的1.81倍和8.22倍,更为重要的是,电-多相臭氧催化技术还可以高效、快速地提高废水的生化性,提高约2个数量级,结果表明,电-多相臭氧催化技术是一种有潜力的高级氧化技术,可以实现高效、快速去除有机污染物以及提高废水的可生化性.
        Electrochemical heterogeneous catalytic ozonation(E-catazone)process was studied for treating amantadine wastewater,which was of high COD,high salinity and nonbiodegradable.The amantadine removal efficiency of E-catazone process was compared with catalytic ozonation(Catazone)and electrochemical oxidation(EO)processes,Besides,the effects of current density,pH and ozone concentration on the amahadine treatment efficiency were further investigated to obtain optimized experimental conditions.Electro-catalytic ozonation obtained 62%of the COD removal efficiency and 44%removal of TOC under pH 12.5,current density 15mA/cm~2,O_3flow rate 0.4L/min and O_3concentration 60mg/L,The performance was significantly better than that of Catazone(COD 44%,TOC 29%)and EO(COD 13%,TOC 17%),E-catazone process demonstrated strong oxidizing power and fast oxidation rate,and the pseudo-first order of COD removal rate constant k was 1.81times and 8.22times of Catazone and EO,More importantly,the E-catazone could improve the biochemical properties of wastewater efficiently and rapidly,and increased by about two order of magnitude.The results showed that the E-catazone was a potential advanced oxidation technology,which could realize high efficiency,fast removal of organic pollutants and improve the biodegradability of wastewater.
引文
[1]曾萍,宋永会,Dresely,等,金刚烷胺模拟废水Fenton氧化及其中间产物分析[J].环境工程技术学报,2011,1(6):455-459.
    [2]宋永会,魏健,马印臣,等,金刚烷胺制药胺化废水与溴化废水的中和络合萃取处理[J].中国环境科学,2014,34(10):2522-2527.
    [3]樊杰,金刚烷胺制药废水Fenton-超声氧化处理及溴化氢双极膜电渗析回收[D].北京:北京林业大学,2013.
    [4]Bobu M,Yediler A,Siminiceanu I,et al,Comparison of different advanced oxidation processes for the degradation of two fluoroquinolone antibiotics in aqueous solutions,Journal of environmental science and health[J].Part A,Toxic/hazardous substances&environmental engineering,2002,36(4):1034-1042.
    [5]宋永会,魏健,马印臣,等.络合萃取法处理金刚烷胺制药废水[J].环境科学研究,2014,27(12):1513-1518.
    [6]曾萍,宋永会,樊杰,等,超声、Fenton及其联合工艺预处理金刚烷胺制药废水效果对比[C]//北京:中国环境科学学会学术年会论文A集,2014:4492-4496.
    [7]Wang Y J,Li X Y,Zhen L M,et al.Electro-Fenton treatment of concentrates generated in nanofiltration of biologically pretreated landfill leachate[J].Journal of Hazardous Materials,2012,115(3):229-230.
    [8]刘永泽,高级氧化过程中OH?和SO4-定量分析及溴代副产物生成规律研究[D].哈尔滨:哈尔滨工业大学,2015.
    [9]Li X Y,Liu G C,Shi M,et al,A novel electro-catalytic ozonation process for treating Rhodamine B using mesoflower-structured TiO2-coated porous titanium gas diffuser anode[J].Water Science and Technology,2016,165(1):154-159.
    [10]倪金雷.不同物相TiO2催化臭氧(/H2O2)体系的氧化效能[D].浙江:浙江工业大学,2015.
    [11]Li X Y,Sun S B,Zhang X,et al,Combined electro-catazone/electroperoxone process for rapid and effective Rhodamine B degradation[J].Separation and Purification Technology,2017,178:189-192.
    [12]Li X Y,Liu G C,Shi M,et al.Using TiO2 Mesoflower Interlayer in Tubular Porous Titanium Membranes for Enhanced Electrocatalytic Filtratio[J].Electrochimica Acta,2016,218:318-324.
    [13]Chemlal R,Azzouz L,Kernani R,et al.Combination of advanced oxidation and biological processes for the landfill leachate treatment[J].Ecological Engineering,2014,73:281-289.
    [14]李兆欣,甄丽敏,李新洋,等.BDD电极阳极氧化垃圾渗滤液纳滤浓缩液[J].环境工程学报,2014,8(11):4662-4668.
    [15]Wang H J,Yuan S,Zhan J H,et al.Mechanisms of enhanced total organic carbon elimination from oxalic acid solutions by electroperoxone process[J].Water Research,2015,80:20-29.
    [16]Komtchou S,Dirany A,Drogui P,et al,Removal of atrazine and its by-products from water using electrochemical advanced oxidation processes[J].Water Research,2017,125:91-103.
    [17]Oulego P,Collado S,Laca A,et al.Impact of leachate composition on the advanced oxidation treatment[J].Water Research,2016,88:389-402.
    [18]Li X Y,Zhu W,Wang C G,et al.The electrochemical oxidation of biologically treated citric acid wastewater in a continuous-flow threedimensional electrode reactor(CTDER)[J].Chemical Engineering Journal,2013,232(10):495-502.
    [19]Kishimoto N,Sugimura E,Feasibility of an electrochemically assisted Fenton method using Fe2+/HOCl system as an advanced oxidation process[J].Water Science and Technology,2010,62(10):2321-2329.
    [20]Yao W K,Wang X F,Yang H G,et al,Removal of pharmaceuticals from secondary effluents by an electroperoxone process[J].Water Research 2015,88:826-83.
    [21]袁实.电催化臭氧水处理技术的开发和研究[D].北京:清华大学,2014.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700