室温钠离子电池关键材料研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Recent Progress in Key Materials for Room-Temperature Sodium-Ion Batteries
  • 作者:王凡凡 ; 刘晓斌 ; 陈龙 ; 陈程成 ; 刘永畅 ; 范丽珍
  • 英文作者:WANG Fan-fan;LIU Xiao-bin;CHEN Long;CHEN Cheng-cheng;LIU Yong-chang;FAN Li-zhen;Institute for Advanced Materials and Technology, University of Science and Technology Beijing;China Electronic Product Reliability and Environmental Testing Research Institute;
  • 关键词:钠离子电池 ; 正极材料 ; 负极材料 ; 电解质材料
  • 英文关键词:sodium-ion batteries;;cathode materials;;anode materials;;electrolytes
  • 中文刊名:DHXX
  • 英文刊名:Journal of Electrochemistry
  • 机构:北京科技大学新材料技术研究院;中国电子产品可靠性与环境试验研究所;
  • 出版日期:2019-03-25 09:57
  • 出版单位:电化学
  • 年:2019
  • 期:v.25;No.111
  • 基金:国家自然科学基金项目(No.51532002,No.21805007);; 中国科协青年人才托举工程(No.2018QNRC001);; 博士后创新人才支持计划(No.BX201600014);; 中央高校基本科研业务费(No.FRF-TP-16-078A1)资助
  • 语种:中文;
  • 页:DHXX201901006
  • 页数:22
  • CN:01
  • ISSN:35-1172/O6
  • 分类号:58-79
摘要
钠离子电池凭借钠资源丰富、价格低廉在大规模储能领域有着重要应用前景.然而,钠离子相对锂离子较大的半径和质量限制了它在电极材料中的可逆脱嵌,导致其电化学性能不佳.因此研发稳定、高效储钠的高比能电极材料是钠离子电池实用化的关键.另外,进一步优化与电极材料相匹配的电解质来实现高安全、长寿命钠离子电池的构建,推动其商业化进程,也是迫切需要解决的问题.本文主要对室温钠离子电池关键材料(包括正极、负极和电解质材料)的研究进展进行简要综述,并探讨了其面临的困难及可行的解决方案,为钠离子电池的发展提供一定参考依据.
        Sodium-ion batteries(SIBs) have attracted tremendous attention in large-scale energy storage applications due to their resource advantages. However, Na+is larger and heavier than Li+, which will limit its reversible reaction with the electrode materials and result in poor electrochemical performance. Thus, developing stable and high-efficiency electrode materials is the key to promoting the practical application of SIBs. Furthermore, the optimization of electrolyte is essential for the construction of high-safety and long-lifespan SIBs. In this review, we mainly summarize the recent advancements of electrode materials and electrolytes for room-temperature SIBs and discuss their challenges and possible resolution strategies. We hope that this review could make valuable contributions to the development of SIBs.
引文
[1]Yabuuchi N,Kubota K,Dahbi M,et al.Research development on sodium-ion batteries[J].Chemical Reviews,2014,114(23):11636-11682.
    [2]Zhang N(张宁),Liu Y C(刘永畅),Chen C C(陈程成),et al.Research on electrode materials for sodium-ion batteries[J].Chinese Journal of Inorganic Chemistry(无机化学学报),2015,31(9):1739-1750.
    [3]Luo W,Shen F,Bommier C,et al.Na-ion battery anodes:Materials and electrochemistry[J].Accounts of Chemical Research,2016,49(2):231-240.
    [4]Kundu D,Talaie E,Duffort V,et al.The emerging chemistry of sodium ion batteries for electrochemical energy storage[J].Angewandte Chemie-International Edition,2015,54(11):3431-3448.
    [5]Kim H,Kim H,Ding Z,et al.Recent progress in electrode materials for sodium-ion batteries[J].Advanced Energy Materials,2016,6(19):1600943.
    [6]Hwang J Y,Myung S T,Sun Y K.Sodium-ion batteries:present and future[J].Chemical Society Reviews,2017,46(12):3529-3614.
    [7]Pan H,Hu Y S,Chen L.Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J].Energy&Environmental Science,2013,6(8):2338-2360.
    [8]Han M H,Gonzalo E,Singh G,et al.A comprehensive review of sodium layered oxide:Powerful cathode for Na-ion battery[J].Energy&Environmental Science,2014,8(1):81-102.
    [9]Delmas C,Braconnier J J,Fouassier C,et al.Electrochemical intercalation of sodium in NaxCoO2bronzes[J].Solid State Ionics,1981,3(8):165-169.
    [10]Fang Y J(方永进),Chen C X(陈重学),Ai X P(艾新平),et al.Recent developments in cathode materials for Na ion batterie[J].Acta Physico-Chimica Sinica(物理化学学报),2017,33(1):211-241.
    [11]Fang Y,Yu X Y,Lou X W.A practical high-energy cathode for sodium-ion batteries based on uniform P2-Na0.7Co O2microspheres[J].Angewandte Chemie-International Edition,2017,56(21):5801-5805.
    [12]Su D W,Wang C Y,Ahn H J,et al.Single crystalline Na0.7MnO2nanoplates as cathode materials for sodiumion batteries with enhanced performance[J].Chemistry-AEuropean Journal,2013,19(33):10884-10889.
    [13]Zhao J,Zhao L W,Chihara K,et al.Electrochemical and thermal properties ofα-NaFeO2cathode for Na-ion batteries[J].Journal of Power Sources,2013,244(5):752-757.
    [14]Vassilaras P E,Ma X H,Li X,et al.Electrochemical properties of monoclinic NaNiO2[J].Journal of The Electrochemical Society,2012,160(2):A207-A211.
    [15]Zhang X,Zhang Z H,Yao S,et al.An effective method to screen sodium-based layered materials for sodium ion batteries[J].NPJ Computational Materials,2018,4:UNSP13.
    [16]Yabuuchi N,Kajiyama M,Iwatate J,et al.P2-type Nax[Fe(1/2)Mn(1/2)]O2made from earth-abundant elements for rechargeable Na batteries[J].Nature Materials,2012,11(6):512-517.
    [17]Chen X Q,Zhou X L,Hu M,et al.Stable layered P3/P2Na0.66Co0.5Mn0.5O2cathode materials for sodium ion batteries[J].Journal of Materials Chemistry A,2015,3(41):20708-20714.
    [18]Guo S H,Liu P,Yu H J,et al.A layered P2-and O3-type composite as a high-energy cathode for rechargeable sodium-ion batteries[J].Angewandte Chemie-International Edition,2015,54(20):5894-5899.
    [19]Yu C Y,Park J S,Jung H G,et al.NaCrO2cathode for high rate sodium-ion batteries[J].Energy&Environmental Science,2015,8(7):2019-2026.
    [20]Guo S H,Li Q,Liu P,et al.Environmentally stable interface of layered oxide cathodes for sodium-ion batteries[J].Nature Communications,2017,8(1):135.
    [21]Zhan P,Wang S,Yuan Y,et al.Facile synthesis of nanorod-like single crystalline Na0.44MnO2for high performance sodium-ion batteries[J].Journal of The Electrochemical Society,2015,162(6):A1028-A1032.
    [22]Xu S Y,Wang Y S,Ben L B,et al.Fe-based tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2designed by a new strategy as a cathode material for sodium-ion batteries[J].Advanced Energy Materials,2015,5(22):1501156.
    [23]Liu Q,Zhe H,Chen M,et al.Multi-angular rod-shape Na0.44MnO2as cathode materials with high-rate and long-life for sodium-ion batteries[J].ACS Applied Materials&Interfaces,2017,9(4):3644-3652.
    [24]Guo S H,Yu H J,Liu D Q,et al.A novel tunnel Na0.61Ti0.48Mn0.52O2cathode material for sodium-ion batteries[J].Chemical Communications,2014,50(59):7998-8001.
    [25]Jiang X L,Liu S,Xu H Y,et al.Tunnel-structured Na0.54Mn0.50Ti0.51O2and Na0.54Mn0.50Ti0.51O2/C nanorods as advanced cathode materials for sodium-ion batteries[J].Chemical Communications,2015,51(40):8480-8483.
    [26]Zhu Y J,Xu Y H,Liu Y H,et al.Comparison of electrochemical performances of olivine NaFePO4in sodium-ion batteries and olivine Li FePO4in lithium-ion batteries[J].Nanoscale,2013,5(2):780-787.
    [27]Oh S M,Myung S T,Hassoun J,et al.Reversible NaFePO4electrode for sodium secondary batteries[J].Electrochemistry Communications,2012,22(22):149-152.
    [28]Galceran M,Saurel D,Acebedo B,et al.The mechanism of NaFePO4(de)sodiation determined by in situ X-ray diffraction[J].Physical Chemistry Chemical Physics,2014,16(19):8837-8842.
    [29]Moreau P,Guyomard D,Gaubicher J,et al.Structure and stability of sodium intercalated phases in olivine FePO4[J].Chemistry of Materials,2010,22(14):4126-4128.
    [30]Li C,Miao X,Chu W,et al.Hollow amorphous NaFePO4nanospheres as a high-capacity and high-rate cathode for sodium-ion batteries[J].Journal of Materials Chemistry A,2015,3(16):8265-8271.
    [31]Rahman M M,Sultana I,Mateti S,et al.Maricite NaFePO4/C/graphene:a novel hybrid cathode for sodium-ion batteries[J].Journal of Materials Chemistry A,2017,5(32):16616-16621.
    [32]Kim J,Seo D H,Kim H,et al.Unexpected discovery of low-cost maricite NaFePO4as a high-performance elec trode for Na-ion batteries[J].Energy&Environmental Science,2015,8(2):540-545.
    [33]Liu Y C,Zhang N,Wang F F,et al.Approaching the downsizing limit of maricite NaFePO4towards high-perfor mance cathode for sodium-ion batteries[J].Advanced Functional Materials,2018,28:1801917.
    [34]Zhu C,Song K,van Aken P A,et al.Carbon-coated Na3V2(PO4)3embedded in porous carbon matrix:an ultrafast Na-storage cathode with the potential of outperform ing Li cathodes[J].Nano Letters,2013,14(4):2175-2180.
    [35]Jian Z L,Han W Z,Lu X,et al.Superior electrochemical performance and storage mechanism of Na3V2(PO4)3cathode for room-temperature sodium-ion batteries[J].Advanced Energy Materials,2013,3(2):156-160.
    [36]Jian Z L,Yuan C C,Han W Z,et al.Atomic structure and kinetics of NASICON NaxV2(PO4)3cathode for sodiumion batteries[J].Advanced Functional Materials,2014,24(27):4265-4272.
    [37]Xu Y N,Wei Q L,Xu C,et al.Layer-by-layer Na3V2(PO4)3embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode[J].Advanced Energy Materials,2016,6(14):UNSP 1600389.
    [38]Guo D L,Qin J W,Yin Z G,et al.Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries[J].Nano Energy,2018,45:136-147.
    [39]Li H,Yu X Q,Bai Y,et al.Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3cathode materials for sodium ion batteries[J].Journal of Materials Chemistry A,2015,3(18):9578-9586.
    [40]Aragon M J,Lavela P,Ortiz G F,et al.Effect of iron substitution in the electrochemical performance of Na3V2-(PO4)3as cathode for na-ion batteries[J].Journal of The Electrochemical Society,2015,162(2):A3077-A3083.
    [41]Guo J Z,Wang P F,Wu X L,et al.High-energy/power and low-temperature cathode for sodium-ion batteries:In situ XRD study and superior full-cell performance[J].Advanced Materials,2017,29(33):1701968.
    [42]Sheng J Z,Zang H,Tang C J,et al.Graphene wrapped NASICON-type Fe2(MoO4)3nanoparticles as a ultra-high rate cathode for sodium ion batteries[J].Nano Energy,2016,24:130-138.
    [43]Barpanda P,Ye T,Nishimura S I,et al.Sodium iron pyrophosphate:A novel 3.0 V iron-based cathode for sodium-ion batteries[J].Electrochemistry Communications,2012,24(10):116-119.
    [44]Kim H,Shakoor R A,Park C,et al.Na2FeP2O7as a promising iron-based pyrophosphate cathode for sodium rechargeable batteries:A combined experimental and theoretical study[J].Advanced Functional Materials,2013,23(9):1147-1155.
    [45]Barpanda P,Ye T,Avdeev M,et al.A new polymorph of Na2MnP2O7as a 3.6 V cathode material for sodium-ion batteries[J].Journal of Materials Chemistry A,2013,1(13):4194-4197.
    [46]Ha K H,Woo S H,Mok D,et al.Batteries:Na4-αM2+α/2-(P2O7)2(2/3≤α≤7/8,M=Fe,Fe0.5Mn0.5,Mn):A promising sodium ion cathode for Na-ion batteries[J].Advanced Energy Materials,2013,3(6):1370023.
    [47]Chen M,Chen L,Hu Z,et al.Carbon-coated Na3.32Fe2.34-(P2O7)2cathode material for high-rate and long-life sodium-ion batteries[J].Advanced Materials,2017,29(21):1605535.
    [48]Jin T,Liu Y,Li Y,et al.Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries[J].Advanced Energy Materials,2017,79(15):1700087.
    [49]Deng X,Shi W,Sunarso J,et al.A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life[J].ACS Applied Materials&Interfaces,2017,9(19):16280-16287.
    [50]Zhao J,Mu L,Qi Y,et al.A phase-transfer assisted solvo-thermal strategy for low-temperature synthesis of Na3(VO1-xPO4)2F1+2xcathodes for sodium-ion batteries[J].Chemical Communications,2015,51(33):7160-7163.
    [51]Qi Y,Mu L,Zhao J,et al.Graphene wrapped NASI-CON-type Fe2(MoO4)3nanoparticles as a ultra-high rate cathode for sodium ion batteries[J].Angewandte ChemieInternational Edition,2015,54(34):9911-9916.
    [52]Park Y U,Seo D H,Kim H,et al.A family of high-performance cathode materials for Na-ion batteries,Na3-(VO1-xPO4)2F1+2x(0≤x≤1):Combined first-principles and experimental study[J].Advanced Functional Materials,2014,24:4603-4614.
    [53]Park Y U,Seo D H,Kwon H S,et al.A new high-energy cathode for a Na-ion battery with ultrahigh stability[J].Journal of the American Chemical Society,2013,135(37):13870-13878.
    [54]Xiang X D,Lu Q Q,Han M,et al.Superior high-rate capability of Na3(VO0.5)2(PO4)2F2nanoparticles embedded in porous graphene through the pseudocapacitive effect[J].Chemical Communications,2016,52(18):3653-3656.
    [55]Barpanda P,Oyama G,Nishimura S,et al.A 3.8-V earthabundant sodium battery electrode[J].Nature Communications,2014,5(5):4358.
    [56]You Y,Wu X L,Yin Y X,et al.High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries[J].Energy&Environmental Science,2014,7(5):1643-1647.
    [57]Lee H W,Wang R Y,Pasta M,et al.Manganese hexacyanomanganate open framework as a high-capacity positive electrode material for sodium-ion batteries[J].Nature Communications,2014,5:5280.
    [58]Li W J,Chou S L,Wang J Z,et al.Facile method to synthesize Na-enriched Na1+xFeFe(CN)6frameworks as cathode with superior electrochemical performance for sodium-ion batteries[J].Chemistry of Materials,2015,27(6):1997-2003.
    [59]Lu Y,Wang L,Cheng J,et al.Cheminform abstract:prussian blue:A new framework of electrode materials for sodium batteries[J].Chemical Communications,2012,48(52):6544-6546.
    [60]Wu X Y,Wu C H,Wei C X,et al.Highly crystallized Na2CoFe(CN)6with suppressed lattice defects as superior cathode material for sodium-ion batteries[J].ACS Applied Materials&Interfaces,2016,8(8):5393-5399.
    [61]Wu X Y,Deng W W,Qian J F,et al.Single-crystal FeFe(CN)6nanoparticles:a high capacity and high rate cathode for Na-ion batteries[J].Journal of Materials Chemistry A,2013,1(35):10130-10134.
    [62]Qian J F(钱江锋),Zhou M(周敏),Cao Y L(曹余良),et al.NaxMyFe(CN)6(M=Fe,Co,Ni):A new class of cathode materials for sodium ion batteries[J].Journal of Electrochemistry(电化学),2012,18(2):108-112.
    [63]Wu X Y,Cao Y L,Ai X P,et al.A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3-Na2Ni Fe(CN)6intercalation chemistry[J].Electrochemistry Communications,2013,31:145-148.
    [64]Wu X Y,Sun M Y,Shen Y F,et al.Cheminform abstract:Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6-NaTi2(PO4)3intercalation chemistry[J].Cheminform,2014,45(22):407-411.
    [65]Sun J Z,Dong Y,Kong C Y.Synthesis of Na2MnFe(CN)6and its application as cathode material for aqueous rechargeable sodium-ion battery[J].Journal of New Materials for Electrochemical Systems,2016,19(3):117-179.
    [66]Wu X Y,Luo Y,Sun M Y,et al.Low-defect Prussian blue nanocubes as high capacity and long life cathodes for aqueous Na-ion batteries[J].Nano Energy,2015,13:117-123.
    [67]Wan M,Tang Y,Wang L L,et al.Core-shell hexacyanoferrate for superior Na-ion batteries[J].Journal of Power Sources,2016,329:290-296.
    [68]Li W J,Chou S L,Wang J Z,et al.Multifunctional conducing polymer coated Na1+xMnFe(CN)6cathode for sodium-ion batteries with superior performance via a facile and one-step chemistry approach[J].Nano Energy,2015,13:200-207.
    [69]Meng Q,Zhang W,Hu M,et al.Mesocrystalline coordination polymer as a promising cathode for sodium-ion batteries[J].Chemical Communications,2015,52(9):1957-1960.
    [70]Huang Y X,Xie M,Zhang J T,et al.A novel border-rich Prussian blue synthetized by inhibitor control as cathode for sodium ion batteries[J].Nano Energy,2017,39:273-283.
    [71]Liu Y C(刘永畅),Chen C C(陈程成),Zhang N(张宁),et al.Research and application of key materials for sodium-ion batteries[J].Journal of Electrochemistry(电化学),2016,22(5):437-452.
    [72]Deng W W,Shen Y F,Qian J F,et al.A perylene diimide crystal with high capacity and stable cyclability for Na-ion batteries[J].ACS Applied Materials&Interfaces,2015,7(38):21095-21099.
    [73]Wang S,Wang L,Zhu Z,et al.All organic sodium-ion batteries with Na4C8H2O6[J].Angewandte Chemie-International Edition,2014,56(23):5892-5896.
    [74]Gocheva I D,Nishijima M,Doi T,et al.Mechanochemical synthesis of NaMF3(M=Fe,Mn,Ni)and their electrochemical properties as positive electrode materials for sodium batteries[J].Journal of Power Sources,2009,187(1):247-252.
    [75]Kitajou A,Komatsu H,Chihara K,et al.Novel synthesis and electrochemical properties of perovskite-type NaFeF3for a sodium-ion battery[J].Journal of Power Sources,2012,198(198):389-392.
    [76]Hou H S,Qiu X Q,Wei W F,et al.Carbon anode materials for advanced sodium-ion batteries[J].Advanced Energy Materials,2017,7(24):1602898.
    [77]Jache B,Adelhelm P.Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena[J].Angewandte Chemie-International Edition,2014,53(38):10169-10173.
    [78]Li Y,Hu Y S,Titirici M M,et al.Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J].Advanced Energy Materials,2016,6(18):1600659.
    [79]Bommier C,Surta T W,Dolgos M,et al.New mechanistic insights on Na-ion storage in nongraphitizable carbon[J].Nano Letters,2015,15(9):5888-5892.
    [80]Tang K,Fu L,White R J,et al.Hollow carbon nanospheres with superior rate capability for sodium-based batteries[J].Advanced Energy Materials,2012,2(7):873-877.
    [81]Cao Y,Xiao L,Sushko M L,et al.Sodium ion insertion in hollow carbon nanowires for battery applications[J].Nano Letters,2012,12(7):3783-3787.
    [82]Hou H,Banks C E,Jing M,et al.Sodium-ion batteries:carbon quantum dots and their derivative 3D porous carbon frameworks for sodium-ion batteries with ultralong cycle life[J].Advanced Materials,2015,27(47):7861-7866.
    [83]Wang S Q,Xia L,Yu L,et al.Free-standing nitrogen-doped carbon nanofiber films:integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability[J].Advanced Energy Materials,2016,6(7):1502217.
    [84]Yang J Q,Zhou X L,Wu D H,et al.S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J].Advanced Materials,2017,29(6):1604108.
    [85]Hou H S,Shao L D,Zhang Y,et al.Large-area carbon nanosheets doped with phosphorus:A high-performance anode material for sodium-ion batteries[J].Advanced Science,2017,4(1):1600243.
    [86]Wang M,Yang Z Z,Li W H,et al.Superior sodium storage in 3D interconnected nitrogen and oxygen dual-doped carbon network[J].Small,2016,12(19):2559-2566.
    [87]Yan Y,Yin Y X,Guo Y G,et al.A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries[J].Advanced Energy Materials,2014,4(8):1079-1098.
    [88]Liu Y,Fan L Z,Jiao L F.Graphene highly scattered in porous carbon nanofibers:A binder-free and high-performance anode for sodium-ion batteries[J].Journal of Materials Chemistry A,2016,5(4):1698-1705.
    [89]Lao M M,Zhang Y,Luo W B,et al.Alloy-based anode materials toward advanced sodium-ion batteries[J].Advanced Materials,2017,29(48):1700622.
    [90]Liu Y C,Zhang N,Jiao L F,et al.Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries[J].Advanced Functional Materials,2015,25(2):214-220.
    [91]Liu Y C,Zhang N,Jiao L F,et al.Tin nanodots encapsulated in porous nitrogen-doped carbon nanofibers as a free-standing anode for advanced sodium-ion batteries[J].Advanced Materials,2015,27(42):6702-6707.
    [92]Zhou X L,Zhong Y R,Yang M,et al.Sb nanoparticles decorated N-rich carbon nanosheets as anode materials for sodium ion batteries with superior rate capability and long cycling stability[J].Chemical Communications,2014,50(85):12888-12891.
    [93]Darwiche A,Marino C,Sougrati M T,et al.Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems:an unexpected electrochemical mechanism[J].Journal of the American Chemical Society,2013,135(51):20805-20811.
    [94]Liu J,Yu L,Wu C,et al.New nanoconfined galvanic replacement synthesis of hollow Sb@C yolk-shell spheres constituting a stable anode for high-rate Li/Na-ion batteries[J].Nano Letters,2017,17(3):2034-2042.
    [95]Xiao L F,Cao Y L,Xiao J,et al.High capacity,reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications[J].Chemical Communications,2012,48(27):3321-3323.
    [96]Qian J F,Wu X Y,Cao Y L,et al.High capacity and rate capability of amorphous phosphorus for sodium ion batteries[J].Angewandte Chemie International Edition,2013,52(17):4633-4636.
    [97]Song J X,Yu Z X,Gordin M L,et al.Chemically bonded phosphorus/graphene hybrid as a high performance anode for sodium-ion batteries[J].Nano Letters,2014,14(11):6329-6335.
    [98]Zhu Y J,Wen Y,Fan X L,et al.Red phosphorus-single-walled carbon nanotube composite as a superior anode for sodium ion batteries[J].ACS Nano,2015,9(3):3254-3264.
    [99]Liu Y C,Zhang N,Liu X B,et al.Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries[J].Energy Storage Materials,2017,9:170-178.
    [100]Kume T,Iwai Y,Sugiyama T,et al.NaSi and Si clathrate prepared on Si substrate[J].Physica Status Solidi,2013,10(12):1739-1741.
    [101]Zhang L,Hu X L,Chen C J,et al.In operando mechanism analysis on nanocrystalline silicon anode material for reversible and ultrafast sodium storage[J].Advanced Materials,2017,29(5):1604708.
    [102]Zhang N,Han X P,Liu Y C,et al.3D porousγ-Fe2O3@C nanocomposite as high-performance anode material of Na-Ion batteries[J].Advanced Energy Materials,2015,5(5):1401123.
    [103]Liu Y,Wang F,Fan L Z.Self-standing Na-storage anode of Fe2O3nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability[J].Nano Research,2018,11:DOI:10.1007/s12274-018-1985-0.
    [104]Liu Y C,Zhang N,Yu C M,et al.MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries[J].Nano Letters,2016,16(5):3321-3328.
    [105]Wang X J,Liu Y C,Wang Y J,et al.CuO quantum dots embedded in carbon nanofibers as binder-free anode for sodium ion batteries with enhanced properties[J].Small,2016,12(35):4865-4872.
    [106]Qin J,Zhao N Q,Shi C S,et al.Sandwiched C@SnO2@Chollow nanostructures as an ultralong-lifespan highrate anode material for lithium-ion and sodium-ion batteries[J].Journal of Materials Chemistry A,2017,5(22):10946-10956.
    [107]Li N,Liao S,Sun Y,et al.Uniformly dispersed self-assembled growth of Sb2O3/Sb@graphene nanocomposites on a 3D carbon sheet network for high Na-storage capacity and excellent stability[J].Journal of Materials Chemistry A,2015,3(11):5820-5828.
    [108]Lu Y Y,Zhao Q,Zhang N,et al.Facile spraying synthesis and high-performance sodium storage of mesoporous MoS2/C microspheres[J].Advanced Functional Materials,2016,26(6):911-918.
    [109]Liu Y C,Kang H Y,Jiao L F,et al.Exfoliated-SnS2restacked on graphene as a high-capacity,high-rate,and long-cycle life anode for sodium ion batteries[J].Nanoscale,2015,7(4):1325-1332.
    [110]Liu Z M,Lu T C,Song T,et al.Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries[J].Energy&Environmental Science,2017,10(7):1576-1580.
    [111]Liu Y C,Zhang N,Kang H Y,et al.WS2nanowires as a high-performance anode for sodium-ion batteries[J].Chemistry,2015,21(33):11878-11884.
    [112]Hou H S,Jing M J,Huang Z D,et al.One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries[J].ACS Applied Materials&Interfaces,2015,7(34):19362-19369.
    [113]Qu B H,Ma C Z,Ji G,et al.Layered SnS2-reduced graphene oxide composite-a high-capacity,high-rate,and long-cycle life sodium-ion battery anode material[J].Advanced Materials,2014,26(23):3854-3859.
    [114]Zhao Y,Goncharova L V,Lushington A,et al.Superior stable and long life sodium metal anodes achieved by atomic layer deposition[J].Advanced Materials,2017,29(18):1606663.
    [115]Song J,Jeong G,Lee A J,et al.Dendrite-free polygonal Na deposition with excellent interfacial stability in a NaAlCl4-2SO2inorganic electrolyte[J].ACS Applied Materials&Interfaces,2015,7(49):27206-27214.
    [116]Lee J,Lee Y,Lee J,et al.Ultraconcentrated sodium bis-(fluorosulfonyl)imide-based electrolytes for high-performance sodium metal batteries[J].ACS Applied Materials&Interfaces,2017,9(4):3723-3732.
    [117]Cao R,Mishra K,Li X L,et al.Enabling room temperature sodium metal batteries[J].Nano Energy,2016,30:825-830.
    [118]Luo W,Lin C F,Zhao O,et al.Ultrathin surface coating enables the stable sodium metal anode[J].Advanced Energy Materials,2017,7(2):1601526.
    [119]Kim Y J,Lee H,Noh H,et al.Enhancing the cycling stability of sodium metal electrode by building an inorganic/organic composite protective layer[J].ACS Applied Materials&Interfaces,2017,9(7):6000-6006.
    [120]Zhao Y,Goncharova L V,Zhang Q,et al.Inorganic-organic coating via molecular layer deposition enables long life sodium metal anode[J].Nano Letters,2017,17(9):5653-5659.
    [121]Luo W,Zhang Y,Xu S M,et al.Encapsulation of metallic Na in an electrically conductive host with porous channels as a highly stable na metal anode[J].Nano Letters,2017,17(6):3792-3797.
    [122]Chi S S,Qi X G,Hu Y S,et al.3D flexible carbon felt host for highly stable sodium metal anodes[J].Advanced Energy Materials,2018,8:1702764.
    [123]Wang T S,Liu Y C,Lu X Y,et al.Dendrite-free Na metal plating/stripping onto 3D porous Cu hosts[J].Energy Storage Materials,2018,15:274-281.
    [124]Liu S,Tang S,Zhang X Y,et al.Porous Al current collector for dendrite-free Na metal anodes[J].Nano Letters,2017,17(9):5862-5868.
    [125]Lu Y Y,Zhang Q,Han M,et al.Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires[J].Chemical Communications,2017,53(96):12910-12913.
    [126]Ni J F,Fu S D,Wu C,et al.Superior sodium storage in Na2Ti3O7nanotube arrays through surface engineering[J].Advanced Energy Materials,2016,6(11):1502568.
    [127]Wang Y S,Yu X Q,Xu S Y,et al.A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries[J].Nature Communications,2013,4(4):2365.
    [128]Sun Y,Zhao L,Pan H L,et al.Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12anodes for room-temperature sodium-ion batteries[J].Nature Communications,2013,4(5):1870.
    [129]Li Q,Guo S H,Zhu K,et al.A postspinel anode enabling sodium-ion ultralong cycling and superfast transport via1D channels[J].Advanced Energy Materials,2017,7(21):1700361.
    [130]Wu X Y,Ma J,Ma Q D,et al.A spray drying approach for the synthesis of Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J].Journal of Materials Chemistry A,2015,3(25):13193-13197.
    [131]Wu X Y,Jin S F,Zhang Z Z,et al.Unraveling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J].Science Advances,2015,1(8):1500330.
    [132]Zhu N(朱娜),Wu F(吴锋),Wu C(吴川),et al.Recent advances of electrolytes for sodium-ion batteries[J].Energy Storage Science and Technology(储能科学与技术),2016,5(3):285-291.
    [133]Ponrouch A,Marchante E,Courty M,et al.In search of an optimized electrolyte for Na-ion batteries[J].Energy&Environmental Science,2012,5(9):8572-8583.
    [134]Jang J Y,Kim H,Lee Y,et al.Cyclic carbonate basedelectrolytes enhancing the electrochemical performance of Na4Fe3(PO4)2(P2O7)cathodes for sodium-ion batteries[J].Electrochemistry Communications,2014,44(7):74-77.
    [135]Kim H,Hong J,Yoon G,et al.Sodium intercalation chemistry in graphite[J].Energy&Environmental Science,2015,8(10):2963-2969.
    [136]Hu Z,Zhu Z Q,Cheng F Y,et al.Pyrite FeS for high-rate and long-life rechargeable sodium batteries[J].Energy&Environmental Science,2015,8(4):1309-1316.
    [137]Li Z,Young D,Xiang K,et al.Towards high power high energy aqueous sodium-ion batteries:the NaTi2(PO4)3/Na0.44MnO2system[J].Advanced Energy Materials,2013,3(3):290-294.
    [138]Armand M B,Chabagno J M,Duclot M J.Poly-ethers as solid electrolytes[C]//Intenational conference on fast ion transport in solids,electrodes and electrolytes.USA:Lake Geneva,WI.1979:131-136.
    [139]Liu J(刘晋),Xu J Y(徐俊毅),Lin Y(林月),et al.Allsolid-state lithium ion battery:Research and industrial prospects[J].Acta Chimica Sinica(化学学报),2013,71:869-878.
    [140]Fan L Z(范丽珍),Chen L(陈龙),Chi S S(池上森),et al.Research progress of key materials for all-solid-state Lithium batteries[J].Journal of the Chinese Ceramic Society(硅酸盐学报),2018,46(1):1-14.
    [141]Qi X G,Ma Q,Liu L L,et al.Sodium bis(fluorosulfonyl)imide/poly(ethylene oxide)polymer electrolytes for sodium-ion batteries[J].ChemElectroChem,2016,3(11):1741-1745.
    [142]Ma Q,Liu J J,Qi X G,et al.A new Na[(FSO2)-(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries[J].Journal of Materials Chemistry A,2017,5(2):7738-7743.
    [143]Ni'Mah Y L,Cheng M Y,Cheng J H,et al.Solid-state polymer nanocomposite electrolyte of Ti O2/PEO/NaClO4for sodium ion batteries[J].Journal of Power Sources,2015,278:375-381.
    [144]Abdullah O G,Aziz S B,Saber D R,et al.Characterization of polyvinyl alcohol film doped with sodium molybdate as solid polymer electrolytes[J].Journal of Materials Science Materials in Electronics,2017,28(12):8928-8936.
    [145]Hong H.Y P.Crystal structures and crystal chemistry in the system Na1+xZr2SixP3-xO12[J].Materials Research Bulletin,1976,11(2):173-182.
    [146]Goodenough J B,Hong Y P,Kafalas J A.Fast Na+-ion transport in skeleton structures[J].Materials Research Bulletin,1976,11(2):203-220.
    [147]Khakpour Z.Influence of M:Ce4+,Gd3+and Yb3+substituted Na3+xZr2-xMxSi2PO12solid NASICON electrolytes on sintering,microstructure and conductivity[J].Electrochimica Acta,2016,196:337-347.
    [148]Zhang Z Z,Zhang Q H,Shi J A,et al.A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life[J].Advanced Energy Materials,2016,7(4):1601196.
    [149]Zhang L,Zhang D C,Yang K,et al.Vacancy-contained tetragonal Na3SbS4superionic conductor[J].Advanced Science,2016,3(10):1600089.
    [150]Richards W D,Tsujimura T,Miara L J,et al.Design and synthesis of the superionic conductor Na10SnP2S12[J].Nature Communications,2016,7:11009.
    [151]Udovic T J,Matsuo M,Unemoto A,et al.Sodium superionic conduction in Na2B12H12[J].Chemical Communications,2014,50(28):3750-3752.
    [152]Duchêne L,Kühnel R S,Rentsch D,et al.A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture[J].Chemical Communications,2017,53(30):4195-4198.
    [153]Kim J K,Lim Y J,Kim H,et al.A hybrid solid electrolyte for flexible solid-state sodium batteries[J].Energy&Environmental Science,2015,8(12):3589-3596.
    [154]Zhang Z,Zhang Q,Ren C,et al.A ceramic/polymer composite solid electrolyte for sodium batteries[J].Journal of Materials Chemistry A,2016,4(41):15823-15828.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700