金属-有机框架在光催化中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applications of metal-organic frameworks in photocatalysis
  • 作者:梁祥 ; 陈莲芬 ; 张利 ; 苏成勇
  • 英文作者:Xiang Liang;Lianfen Chen;Li Zhang;Cheng-Yong Su;School of Chemistry, Sun Yat-Sen University;
  • 关键词:金属-有机框架 ; 异相催化 ; 光催化 ; 水分解 ; CO_2还原
  • 英文关键词:metal-organic frameworks;;heterogeneous catalysis;;photocatalysis;;water splitting;;CO_2 reduction
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中山大学化学学院;
  • 出版日期:2018-01-30
  • 出版单位:科学通报
  • 年:2018
  • 期:v.63
  • 基金:中山大学实验室开放基金(201610250060);; 广州市计划科技项目(201707010168);; 国家自然科学基金(21373278,91222201)资助
  • 语种:中文;
  • 页:KXTB201803002
  • 页数:18
  • CN:03
  • ISSN:11-1784/N
  • 分类号:14-31
摘要
为了缓解并最终解决能源问题,自20世纪至今,人们一直在探索如何利用光能如太阳光高效环保地将水分解生成清洁能源氢气,以及利用光能实现人工二氧化碳的还原过程(模拟光合作用).金属-有机框架(metalorganic frameworks,MOFs)具有独特的物理和化学性质,如超高的比表面积、可设计和精确控制的孔洞、对光生电子的多种传递机制、方便与染料分子连接、或是可直接引入具有优异光学活性的配体和金属.作为一大类近二十年来迅速发展的微孔/介孔材料,在光催化领域引起了越来越多研究者的兴趣.本文通过一些代表性的实例总结了MOFs作为新兴光催化材料的独特优势和内在优点,展望了MOFs在光催化应用中的机遇和发展前景.首先介绍了MOFs的基本概念和特性,阐述了相对于其他材料而言,MOFs的独特优势,并解释了为何它能在光催化领域引起广泛的关注;之后将用于光催化的MOFs分成3大类,分别是:(1)依靠无机金属簇作为半导体结点的MOFs;(2)引入具有光活性的有机连接体(即配体)的MOFs;(3)以及利用超分子化学中主-客体相互作用,在孔洞中包覆氧化还原物种的MOFs,其中又细分为包覆纳米粒子或者金属催化剂、多金属含氧酸盐和其他纳米复合材料3个小类;最后,总结了MOFs在光催化中应用时仍需解决的问题,展望了该领域的研究方向.
        To relieve and solve the energy problem, effective methods to use solar energy must be built up. To be more specifically, we need figure out how to utilize sunlight for water splitting reaction, giving rise to hydrogen as clean energy, and photoreduction of carbon dioxide, leading to the formation of useful liquid products(e.g., HCOO~-, HCHO and CH_3OH) or gaseous products(e.g., CH_4 and CO). As a class of distinguished and unique materials, metal-organic frameworks(MOFs) have drawn a lot of attention, considering that they display special physical and chemical properties such as exceedingly high surface areas, designable and controllable cavities, different mechanisms of photo-induced electrons transfer, and moreover photoactive parts can be easily introduced into MOFs by either encapsulating dye molecules into the cavities or constructing the frameworks with optically active bridging ligands or metal nodes. In this review, we have commented on the challenges in this field, summarized the unique advantages and inherent merits of MOFs as the emerging materials, and pointed out the opportunities and development strategies of MOFs for their applications in photocatalysis. Firstly, we have introduced MOFs' concepts and features, distinguishing them from other porous materials, and their advantages in photocatalysis. MOFs are crystalline porous materials formed from ligands(including metalloligands) and transition-metal nodes. The structures of MOFs are of facile design, and can be further modified through post-synthetic methods. Some MOFs display high thermal and chemical stability, which can be stable up to 500℃ and resist a variety of reaction media either organic solvents or aqueous, even in acidic and basic solutions. MOFs can be photoresponsive through light absorption by the organic linker, the metal oxide nodes or the photoactive species entrapped in the voids. Photoexcitation of the light absorbing units in MOFs generates the excited state, which might induce photocatalytic activity. Next, we have classified photocatalytic MOFs into three types, including(1) metal-oxo clusters as semiconductor dots,(2) ligands/metalloligands as photocatalysts, and(3) photocatalytic species(nanoparticles, polyoxometalates, nano-composites, and etc.) encapsulated into the pore, and discussed their applications in photocatalysis in details. As for type I, metal-oxo clusters, especially Zr-O or Ti-O clusters, as the nodes have been assembled into MOFs. Upon the absorption of photons with the energy greater than the bandgap of the ligand, a ligand-to-metal charge-separation state was generated, resulting in photocatalytic activity. In type II, a few molecular photocatalysts based on metal-polypyridine complexes, usually being Ru and Ir complexes, metalloporphyrins and organic dyes have been incorporated into MOFs to afford photocatalysts under visible light. Considering type III, photoactive species, including polyoxometalates and metal nanoparticles(e.g., Pt, Pd, Au, and Ag NPs), have been doped into the cavities of MOFs. In addition, integration of an inorganic semiconductor with a MOF gives rise to a composite photocatalyst, which combines the advantages of both materials and then results in higher efficiency, selectivity and stability(especially low metal leaching and recyclability). Finally, we have provided our perspectives for the future of MOFs as photocatalysts. MOFs have displayed the potentials in photocatalysis, but there still exist large improvement spaces. The relatively low stability of MOFs compared to inorganic semiconductors limits their applications for practice. In most reports of MOF photocatalysts, sacrificial agents are required, which isn't consistent with the sustainable development concept. MOFs with strong absorption of visible light, long lifetime of excited state, high product selectivity and stability are in pursuing.
引文
1 Lehn J.Supramolecular chemistry.Science,1993,260:1762-1763
    2 Liu J,Chen L,Cui H,et al.Applications of metal-organic frameworks in heterogeneous supramolecular catalysis.Chem Soc Rev,2014,43:6011-6061
    3 Odoh S O,Cramer C J,Truhlar D G,et al.Quantum-chemical characterization of the properties and reactivities of metal-organic frameworks.Chem Rev,2015,115:6051-6111
    4 Maurin G,Serre C,Cooper A,et al.The new age of MOFs and of their porous-related solids.Chem Soc Rev,2017,46:3104-3107
    5 Rubio-Martinez M,Avci-Camur C,Thornton A W,et al.New synthetic routes towards MOF production at scale.Chem Soc Rev,2017,46:3453-3480
    6 Qiu S,Xue M,Zhu G.Metal-organic framework membranes:From synthesis to separation application.Chem Soc Rev,2014,43:6116-6140
    7 Adil K,Belmabkhout Y,Pillai R S,et al.Gas/vapour separation using ultra-microporous metal-organic frameworks:Insights into the structure/separation relationship.Chem Soc Rev,2017,46:3402-3430
    8 Bobbitt N S,Mendonca M L,Howarth A J,et al.Metal-organic frameworks for the removal of toxic industrial chemicals and chemical warfare agents.Chem Soc Rev,2017,46:3357-3385
    9 He Y,Zhou W,Qian G,et al.Methane storage in metal-organic frameworks.Chem Soc Rev,2014,43:5657-5678
    10 Evans J D,Jelfs K E,Day G M,et al.Application of computational methods to the design and characterisation of porous molecular materials.Chem Soc Rev,2017,46:3286-3301
    11 Chughtai A H,Ahmad N,Younus H A,et al.Metal-organic frameworks:Versatile heterogeneous catalysts for efficient catalytic organic transformations.Chem Soc Rev,2015,44:6804-6849
    12 Corma A.Heterogeneous catalysis:Understanding for designing,and designing for applications.Angew Chem Int Ed,2016,55:6112-6113
    13 Dhakshinamoorthy A,Asiri A M,Garcia H.Metal-organic framework(MOF)compounds:Photocatalysts for redox reactions and solar fuel production.Angew Chem Int Ed,2016,55:5414-5445
    14 Dhakshinamoorthy A,Asiri A M,Garcia H.Mixed-metal or mixed-linker metal organic frameworks as heterogeneous catalysts.Catal Sci Technol,2016,6:5238-5261
    15 Dias E M,Petit C.Towards the use of metal-organic frameworks for water reuse:A review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field.J Mater Chem A,2015,3:22484-22506
    16 Farrusseng D,Aguado S,Pinel C.Metal-organic frameworks:Opportunities for catalysis.Angew Chem Int Ed,2009,48:7502-7513
    17 García-García P,Müller M,Corma A.MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts.Chem Sci,2014,5:2979
    18 Gascon J,Corma A,Kapteijn F,et al.Metal organic framework catalysis:Quo vadis?ACS Catal,2013,4:361-378
    19 Wales D J,Grand J,Ting V P,et al.Gas sensing using porous materials for automotive applications.Chem Soc Rev,2015,44:4290-4321
    20 Lustig W P,Mukherjee S,Rudd N D,et al.Metal-organic frameworks:Functional luminescent and photonic materials for sensing applications.Chem Soc Rev,2017,46:3242-3285
    21 Zhu Q-L,Xu Q.Metal-organic framework composites.Chem Soc Rev,2014,43:5468-5512
    22 Dhakshinamoorthy A,Garcia H.Catalysis by metal nanoparticles embedded on metal-organic frameworks.Chem Soc Rev,2012,41:5262-5284
    23 Kitao T,Zhang Y,Kitagawa S,et al.Hybridization of MOFs and polymers.Chem Soc Rev,2017,46:3108-3133
    24 Lian X,Fang Y,Joseph E,et al.Enzyme-MOF(metal-organic framework)composites.Chem Soc Rev,2017,46:3386-3401
    25 Stavila V,Talin A A,Allendorf M D.MOF-based electronic and opto-electronic devices.Chem Soc Rev,2014,43:5994-6010
    26 Medishetty R,Zareba J K,Mayer D,et al.Nonlinear optical properties,upconversion and lasing in metal-organic frameworks.Chem Soc Rev,2017,46:4976-5004
    27 Stassen I,Burtch N,Talin A,et al.An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors.Chem Soc Rev,2017,46:3185-3241
    28 Silva C G,Corma A,García H.Metal-organic frameworks as semiconductors.J Mater Chem,2010,20:3141
    29 Lee J,Farha O K,Roberts J,et al.Metal-organic framework materials as catalysts.Chem Soc Rev,2009,38:1450-1459
    30 Dhakshinamoorthy A,Alvaro M,Garcia H.Metal-organic frameworks as heterogeneous catalysts for oxidation reactions.Catal Sci Technol,2011,1:856
    31 Huang Y B,Liang J,Wang X S,et al.Multifunctional metal-organic framework catalysts:Synergistic catalysis and tandem reactions.Chem Soc Rev,2017,46:126-157
    32 Kim K,Banerjee M,Yoon M,et al.Chiral metal-organic porous materials:Synthetic strategies and applications in chiral separation and catalysis.Top Curr Chem,2009,293:115-153
    33 Liu Y,Xuan W,Cui Y.Engineering homochiral metal-organic frameworks for heterogeneous asymmetric catalysis and enantioselective separation.Adv Mater,2010,22:4112-4135
    34 Lewis N S.Research opportunities to advance solar energy utilization.Science,2016,351:6271
    35 Horiuchi Y,Toyao T,Takeuchi M,et al.Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion-From semiconducting Ti O2 to MOF/PCP photocatalysts.Phys Chem Chem Phys,2013,15:13243-13253
    36 Kaur R,Kim K H,Paul A K,et al.Recent advances in the photovoltaic applications of coordination polymers and metal organic frameworks.J Mater Chem A,2016,4:3991-4002
    37 Li Y,Xu H,Ouyang S,et al.Metal-organic frameworks for photocatalysis.Phys Chem Chem Phys,2016,18:7563-7572
    38 Meyer K,Ranocchiari M,van Bokhoven J A.Metal organic frameworks for photo-catalytic water splitting.Energy Environ Sci,2015,8:1923-1937
    39 Zeng L,Guo X,He C,et al.Metal-organic frameworks:Versatile materials for heterogeneous photocatalysis.ACS Catal,2016,6:7935-7947
    40 Falcaro P,Ricco R,Yazdi A,et al.Application of metal and metal oxide nanoparticles@MOFs.Coord Chem Rev,2016,307:237-254
    41 Aguilera-Sigalat J,Bradshaw D.Synthesis and applications of metal-organic framework-quantum dot(QD@MOF)composites.Coord Chem Rev,2016,307:267-291
    42 Chen D,Xing H,Wang C,et al.Highly efficient visible-light-driven CO2 reduction to formate by a new anthracene-based zirconium MOF via dual catalytic routes.J Mater Chem A,2016,4:2657-2662
    43 Deenadayalan M S,Sharma N,Verma P K,et al.Visible-light-assisted photocatalytic reduction of nitroaromatics by recyclale Ni(II)-porphyrin metal-organic framework(MOF)at RT.Inorg Chem,2016,55:5320-5327
    44 Xu H Q,Hu J,Wang D,et al.Visible-light photoreduction of CO2 in a metal-organic framework:Boosting electron-hole separation via electron trap states.J Am Chem Soc,2015,137:13440-13443
    45 Zou L,Feng D,Liu T F,et al.A versatile synthetic route for the preparation of titanium metal-organic frameworks.Chem Sci,2016,7:1063-1069
    46 Sun D,Ye L,Li Z.Visible-light-assisted aerobic photocatalytic oxidation of amines to imines over NH2-MIL-125(Ti).Appl Catal BEnviron,2015,164:428-432
    47 Tu J,Zeng X,Xu F,et al.Microwave-induced fast incorporation of titanium into Ui O-66 metal-organic frameworks for enhanced photocatalytic properties.Chem Commun,2017,53:3361-3364
    48 Logan M W,Lau Y A,Zheng Y,et al.Heterogeneous photoredox synthesis of N-hydroxy-oxazolidinones catalysed by metal-organic frameworks.Catal Sci Technol,2016,6:5647-5655
    49 Chi L,Xu Q,Liang X,et al.Iron-based metal-organic frameworks as catalysts for visible light-driven water oxidation.Small,2016,12:1351-1358
    50 Li Q Y,Ma Z,Zhang W Q,et al.AIE-active tetraphenylethene functionalized metal-organic framework for selective detection of nitroaromatic explosives and organic photocatalysis.Chem Commun,2016,52:11284-11287
    51 Zhang S,Han L,Li L,et al.A highly symmetric metal-organic framework based on a propeller-like Ru-organic metalloligand for photocatalysis and explosives detection.Crys Growth Des,2013,13:5466-5472
    52 Wang C,Xie Z,de Krafft K E,et al.Doping metal-organic frameworks for water oxidation,carbon dioxide reduction,and organic photocatalysis.J Am Chem Soc,2011,133:13445-13454
    53 Kim D,Whang D R,Park S Y.Self-healing of molecular catalyst and photosensitizer on metal-organic framework:robust molecular system for photocatalytic H2 evolution from water.J Am Chem Soc,2016,138:8698-8701
    54 Fei H,Sampson M D,Lee Y,et al.Photocatalytic CO2 reduction to formate using a Mn(I)molecular catalyst in a robust metal-organic framework.Inorg Chem,2015,54:6821-6828
    55 Chen Y F,Tan L L,Liu J M,et al.Calix4arene based dye-sensitized Pt@Ui O-66-NH2 metal-organic framework for efficient visible-light photocatalytic hydrogen production.Appl Cata B Environ,2017,206:426-433
    56 Xiao J D,Shang Q,Xiong Y,et al.Boosting photocatalytic hydrogen production of a metal-organic framework decorated with platinum nanoparticles:The platinum location matters.Angew Chem Int Ed,2016,55:9389-9393
    57 Nasalevich M A,Becker R,Ramos-Fernandez E V,et al.Co@NH2-MIL-125(Ti):Cobaloxime-derived metal-organic framework-based composite for light-driven H2 production.Energy Environ Sci,2015,8:364-375
    58 Li Z,Xiao J-D,Jiang H-L.Encapsulating a Co(II)molecular photocatalyst in metal-organic framework for visible-light-driven H2production:Boosting catalytic efficiency via spatial charge separation.ACS Catal,2016,6:5359-5365
    59 An Y,Liu Y,An P,et al.Ni(II)coordination to an Al-based metal-organic framework made from 2-aminoterephthalate for photocatalytic overall water splitting.Angew Chem Int Ed,2017,56:3036-3040
    60 Guo W,Lv H,Chen Z,et al.Self-assembly of polyoxometalates,Pt nanoparticles and metal-organic frameworks into a hybrid material for synergistic hydrogen evolution.J Mater Chem A,2016,4:5952-5957
    61 Kong X J,Lin Z,Zhang Z M,et al.Hierarchical integration of photosensitizing metal-organic frameworks and nickel-containing polyoxometalates for efficient visible-light-driven hydrogen evolution.Angew Chem,2016,128:6521-6526
    62 Shi D,He C,Qi B,et al.Merging of the photocatalysis and copper catalysis in metal-organic frameworks for oxidative C-C bond formation.Chem Sci,2015,6:1035-1042
    63 Li R,Hu J,Deng M,et al.Integration of an inorganic semiconductor with a metal-organic framework:A platform for enhanced gaseous photocatalytic reactions.Adv Mater,2014,26:4783-4788
    64 Hong J,Chen C,Bedoya F E,et al.Carbon nitride nanosheet/metal-organic framework nanocomposites with synergistic photocatalytic activities.Catal Sci Technol,2016,6:5042-5051
    65 Zhao Y,Dong Y,Liu F,et al.Coordinative integration of a metal-porphyrinic framework and Ti O2 nanoparticles for the formation of composite photocatalysts with enhanced visible-light-driven photocatalytic activities.J Mater Chem A,2017,5:15380-15389
    66 Santaclara J G,Kapteijn F,Gascon J,et al.Understanding metal-organic frameworks for photocatalytic solar fuel production.Cryst Eng Comm,2017,19:4118-4125
    67 Zhang T,Lin W.Metal-organic frameworks for artificial photosynthesis and photocatalysis.Chem Soc Rev,2014,43:5982-5993
    68 Wang S,Wang X.Multifunctional metal-organic frameworks for photocatalysis.Small,2015,11:3097-3112
    69 Zhao M,Ou S,Wu C D.Porous metal-organic frameworks for heterogeneous biomimetic catalysis.Acc Chem Res,2014,47:1199-1207
    70 Gu Z Y,Park J,Raiff A,et al.Metal-organic frameworks as biomimetic catalysts.Chem Cat Chem,2014,6:67-75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700