Mo-Al_2O_3太阳能选择吸收涂层的制备及其光学性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and Optical Properties of Mo-Al_2O_3 Solar Selective Absorbing Coatings
  • 作者:张文辉 ; 张敏 ; 李影 ; 殷雪 ; 李美仪 ; 李小晶
  • 英文作者:ZHANG Wen-hui;ZHANG Min;LI Ying;YIN Xue;LI Mei-yi;LI Xiao-jing;School of Physics and Electronic Technology, Liaoning Normal University;
  • 关键词:选择吸收涂层 ; Mo-Al2O3 ; 吸收率 ; 反射率 ; 磁控溅射
  • 英文关键词:selective absorbing coating;;molybdenum-aluminium oxide(Mo-Al2O3);;absorptance;;reflectance;;magnetron sputtering
  • 中文刊名:BMGC
  • 英文刊名:China Surface Engineering
  • 机构:辽宁师范大学物理与电子技术学院;
  • 出版日期:2018-07-17 13:41
  • 出版单位:中国表面工程
  • 年:2018
  • 期:v.31;No.151
  • 基金:国家自然科学基金(51101080)~~
  • 语种:中文;
  • 页:BMGC201804013
  • 页数:8
  • CN:04
  • ISSN:11-3905/TG
  • 分类号:102-109
摘要
选用金属Mo作为红外反射层,Mo-Al_2O_3作为吸收层,Al_2O_3作为减反射层,利用磁控溅射镀膜技术,在抛光的316L不锈钢片上制备具有双吸收层的Mo/Mo-Al_2O_3/Al_2O_3太阳能选择吸收膜系,研究减反射层和高、低金属吸收层的厚度及其金属体积分数对膜系选择吸收性能的影响。结果表明,当减反层厚度为50 nm时,所得膜系的选择吸收性能最佳。高金属吸收层厚度的增加会使薄膜反射率的骤升阈值发生红移,薄膜的发射率升高,但其厚度过高,则会影响薄膜的干涉效应。低金属吸收层厚度的增加会导致可见光波段的吸收率增加,红外波段的发射率上升,薄膜反射率的骤升阈值红移。高金属吸收层中金属体积分数增加会导致它的方块电阻降低,使薄膜的红外发射率下降。低金属吸收层中金属体积分数的增加,会导致薄膜的红外干涉下降,使其发射率升高,获得薄膜的最佳吸收率为0.922,发射率为0.029。
        Selecting metal Mo used as the infrared reflective layer, Mo-Al_2O_3 as the absorbing layer and Al_2O_3 as the antireflective layer, Mo/Mo-Al_2O_3/Al_2O_3 selective absorbing coatings with double absorption layer were fabricated on polished 316 L stainless steel using magnetron sputtering, and the influence of the volume fraction of Mo, the thickness of antireflective layer and absorbing layer on the optical property were studied, respectively. Results show that the thickness of the antireflective layer affects the absorption edge and the absorption peak location. When the thickness of antireflective layer is 50 nm, the absorption performance of the film systems is the best. With increasing thickness of the high metal absorbing layer, the threshold wavelength of the reflectance shifts to wards red, and the emittance also increases. However, if the thickness is too high, it affects the film interference effect. With increasing thickness of the high metal absorbing layer, the visible absorption rate increases and the threshold wavelength of the reflectance shifts towards red, but the emittance gradually increases. With increasing metal content of the high metal absorbing layer, its square resistance is reduced. As a result, the emittance gradually declines. With increasing metal content of the low metal absorbing layer, the absorption of long wave spectrum increases, resulting in a decline in the infrared interference of the film, and thus its emittance rises. The optimized coating exhibits an absorptance of 0.922 and an emittance of 0.029.
引文
[1]侯玉芝,蒋利军,王树茂,等.中高温金属/陶瓷型光谱选择吸收涂层的研究进展[J].稀有金属,2009,33(2):279-284.HOU Y Z,JIANG L J,WANG S M,et al.Investigation and development of metal/ceramic selective absorbing coating for medium&high temperature applications[J].Chinese Journal of Rare Metals,2009,33(2):279-284(in Chinese).
    [2]李金花,宋宽秀,王一平.中高温太阳光谱选择性吸收涂层的研究进展[J].化学工业与工程,2004,21(6):432-437.LI J H,SONG K X,WANG Y P.Development of solar spectrally selective absorbing coatings for medium&high-temperature applications[J].Chemical Industry and Engineering,2004,21(6):432-437(in Chinese).
    [3]吴绍情,杨琨.太阳能硅溶胶吸热涂料[J].太阳能学报,1996,17(2):172-174.WU S Q,YANG K.Colloidal silica paint for solar application[J].Acta Energiae Solaris Sinica,1996,17(2):172-174(in Chinese).
    [4]李镇祥,赵剑曦.溶胶-凝胶法制备太阳光谱选择性吸收薄膜的研究进展[J].硅酸盐学报,2012,40(5):762-768.LI Z X,ZHAO J X.Development on solar selective absorbing coatings prepared by sol-gel method[J].Journal of the Chinese Ceramic Society,2012,40(5):762-768(in Chinese).
    [5]MOON J,KIM T K,VANSADERS B,et al.Black oxide nanoparticles as durable solar absorbing material for hightemperature concentrating solar power system[J].Solar Energy Materials&Solar Cells,2015,134:417-424.
    [6]JOLY M,BOUVARD O,GASCOU T,ANTONETTI Y,et al.Optical and structural analysis of sol-gel derived Cu-CoMn-Si oxides for black selective solar nanocomposite multilayered coatings[J].Solar Energy Materials&Solar Cells,2015,143:573-580.
    [7]DING D W,CAI W M,LONG M C,et al.Optical structural and thermal characteristics of Cu-Cu Al2O4 hybrids deposited in anodic aluminum oxide as selective solar absorber[J].Solar Energy Materials&Solar Cells,2010,94(10):1578-1581.
    [8]周邦伟,殷志强,魏志渊,等.真空沉积双层黑铬选择性涂层[J].太阳能学报,1982,3(2):19-26.ZHOU B W,YIN Z Q,WEI Z Y,et al.Evaporated doublelayer black chrome selective coatings[J].Acta Energiae Solaris Sinica,1982,3(2):19-26(in Chinese).
    [9]高祥虎,赵鑫,耿庆芬,等.光谱选择性太阳能吸收涂层的研究进展[J].材料导报,2012,26(13):26-31.GAO X H,ZHAO X,GENG Q F,et al.Recent advance of spectrally selective solar absorber coating[J].Materials Review,2012,26(13):26-31(in Chinese).
    [10]谢光明.中高温太阳选择性吸收表面[J].太阳能,2000(2):22-23.XIE G M.Medium&high temperature solar selective absorption surface[J].Solar Energy,2000(2):22-23(in Chinese).
    [11]汪保卫,沈辉.Ni Cr系光谱选择性吸收薄膜的结构与性能表征[J].太阳能学报,2005,26(1):52-58.WANG B W,SHEN H.Characterization and optical properties of Ni Cr system solar selective coatings[J].Acta Energiae Solaris Sinica,2005,26(1):52-58(in Chinese).
    [12]郝雷,王树茂,蒋利军,等.非真空高温太阳光谱选择性吸收涂层的研制[J].科学通报,2009,54(2):251-254.HAO L,WANG S M,JIANG L J,et al.Development of selective absorption coatings for non-vacuum high temperature solar spectrum[J].Chinese Science Bulletin,2009,54(2):251-254(in Chinese).
    [13]杨中周.中频磁控溅射Ti-DLC太阳能选择性吸收涂层[D].北京:中国地质大学,2013.YANG Z Z.Ti-DLC solar selective absorbing coatings by mid-frequency magnetron sputtering[D].Beijing:China University of Geosciences,2013(in Chinese).
    [14]张敏,梁卉,张志丹,等.W-Al N高温太阳光谱选择吸收涂层的结构优化与实验验证[J].中国科学:技术科学,2016,46(1):46.ZHANG M,LIANG H,ZHANG Z D,et al.Structure optimization and experimental verification of W-Al N high temperature solar spectrum selective absorption coatings[J].Science Sinica Technology,2016,46(1):46(in Chinese).
    [15]ZHANG Q C,MILLS D R.Very low-emittance solar selective surfaces using new film structure[J].Journal of Applied Physics,1992,72(7):3013-3021.
    [16]ZHANG Q C,MILLS D R.New cermet film structures with much improved selectivity for solar thermal applications[J].Applied Physics Letters,1992,60(5):545-547.
    [17]丁大伟.高温太阳能选择性吸收涂层的设计[D].上海:上海交通大学,2008.DING D W.Design of high-temperature solar selective solar absorber[D].Shanghai:Shanghai Jiao Tong University,2008(in Chinese).
    [18]KENNEDY C E.Review of mid-to high-temperature solar selective absorber materials[J].National Renewable Energy Laboratory,NREL/TP-520-31267,2002.https://www.nrel.gov/docs/fy02osti/31267.pdf
    [19]唐晋发,郑权.应用薄膜光学[M].上海:上海科学技术出版社,1984:39-42.TANG J F,ZHENG Q.Applied optics in thin films[M].Shanghai:Shanghai Science&Technology Press,1984:39-42(in China).
    [20]BRUGGEMAN D A G.Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen.I.Dielektrizit?tskonstanten und Leitf?higkeiten der Mischk?rper aus isotropen Substanzen[J].Annalen Der Physik,1935,416:636-664.
    [21]史月艳,那鸿悦.太阳光谱选择性吸收膜系设计、制备及测评[M].北京:清华大学出版社,2009:35-32.SHI Y Y,NA H Y.Design,preparation and evaluation of solar spectral selective absorption membrane system[M].Beijing:Tsinghua University Press,2009:35-32(in Chinese).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700