矿井胶带火灾巷道环境多参数时空演化规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal evolution law of multiple parameters of roadway environment for rubber-belt fire in mine
  • 作者:郭军 ; 刘荫 ; 金永飞 ; 郑学召 ; 张泽
  • 英文作者:GUO Jun;LIU Yin;JIN Yong-fei;ZHENG Xue-zhao;ZHANG Ze;College of Safety Science and Engineering,Xi'an University of Science and Technology;Key Laboratory of Western Mine Exploitation and Hazard Prevention,Ministry of Education,Xi'an University of Science and Technology;State Mine Emergency Rescue(Xi'an) Research Center,Xi'an University of Science and Technology;
  • 关键词:矿业工程 ; 胶带火灾 ; 相似模拟试验 ; 时空演化规律 ; 温度场 ; 浓度场
  • 英文关键词:mineral engineering;;rubber-belt fire;;similar simulation experiment;;spatiotemporal evolution law;;temperature field;;concentration field
  • 中文刊名:XKXB
  • 英文刊名:Journal of Xi'an University of Science and Technology
  • 机构:西安科技大学安全科学与工程学院;西安科技大学西部矿井开采及灾害防治教育部重点实验室;西安科技大学国家矿山应急救援(西安)研究中心;
  • 出版日期:2019-01-31
  • 出版单位:西安科技大学学报
  • 年:2019
  • 期:v.39;No.165
  • 基金:国家重点研发计划项目(2018YFC0808201);; 陕西省自然科学基础研究计划项目(2018JQ5080; 2018JM5009);; 陕西省教育厅专项科学研究计划项目(17JK0495);; 中国博士后科学基金(2017M623209)
  • 语种:中文;
  • 页:XKXB201901004
  • 页数:7
  • CN:01
  • ISSN:61-1434/N
  • 分类号:24-30
摘要
采用物理相似模拟实验的方法,借助自主搭建的矿井外因火灾烟气蔓延相似模拟实验平台,研究了矿井平直巷道内胶带火灾发展初期高温、CO等有毒有害气体浓度等灾害多参数的时空演化规律。通过试验模拟,确定了适宜胶带火灾发展的最佳风速,得到了最佳工况条件下,模拟巷道内温度场与有毒有害气体浓度场的分布规律。结果表明:当风速为0. 4 m/s时,胶带质量损失率最大,且热量扩散率最高,为试验的最佳风速;火灾烟气蔓延过程中,巷道温度呈现出随着距火源距离增加而先升高后降低的趋势;气态产物CO浓度表现出指数升高到一定阶段后逐渐趋于稳定,而CO_2气体浓度则表现出线性升高的趋势。研究成果将对矿井火灾事故救援中危险区域划分,以及矿井外因火灾的蔓延扩散规律研究具有一定的指导和借鉴意义。
        The spatiotemporal evolution law of multiple parameters was studied for rubber-belt fire in straight tunnel of coal mine by the method of physical similarity simulation experiment. The multiple parameters mainly include high temperature,toxic and harmful gases,such as CO and CO2. The selfbuilt experiment platform for smoke spreading of mine external-cause fire was used in the study. The optimal air speed for the development of the rubber-belt fire is determined. At the same time,the distribution law of the temperature field and the concentration field of toxic and harmful gases in the tunnel was obtained under the optimum condition. The results show that at the air speed of 0. 4 m/s,the quality loss rate of the rubber-belt and the heat diffusion rate were the highest,which was optimal air speed.In the process of smoke spreading,the temperature of tunnel shows the trend of decreasing after increasing firstly,when the distance from the ignition source is increasing. The CO gas concentration showthe trend of a certain stage of gradually stabilized after exponential growth,and CO_2 gas shows a trend of linear increase. This study is of guidance for the division of dangerous areas in the mine fire accident rescue,and of reference for study of the spread of mine external-cause fire.
引文
[1]金永飞,郭军,文虎,等.煤自燃高温贫氧氧化燃烧特性参数的实验研究[J].煤炭学报,2015,40(3):596-602.JIN Yong-fei,GUO Jun,WEN Hu,et al. Experimental study on the high temperature lean oxygen oxidation combustion characteristic parameters of coal spontaneous combustion[J]. Journal of China Coal Society,2015,40(3):596-602.
    [2]安敬鱼,牛会永,邓军.矿井火灾原因综合分析及防治技术[J].矿业工程研究,2015,30(3):40-44.AN Jing-yu,NIU Hui-yong,DENG Jun. Comprehensive causes and treatment technology of mine’s fire[J].Mineral Engineering Research,2015,30(3):40-44.
    [3]郑学召,回硕,文虎,等.矿井火灾孕灾机制及防控技术研究进展[J].煤矿安全,2017,48(10):148-151,155.ZHENG Xue-zhao,HUI Shuo,WEN Hu,et al. Research progress on preventing and controlling technology and disaster-forming mechanism of mine fire[J]. Safety in Coal Mines,2017,48(10):148-151,155.
    [4]李士戎,邓军,陈晓坤,等.煤矿井下输送带摩擦起火危险点分布规律[J].西安科技大学学报,2011,31(6):679-683.LI Shi-rong,DENG Jun,CHEN Xiao-kun,et al. Distribution law of potential fire point caused by friction of conveyor belt in underground coal mines[J]. Journal of Xi’an University of Science and Technology,2011,31(6):679-683.
    [5]张玉涛,马婷,林姣,等. 2007—2016年全国重特大火灾事故分析及时空分布规律[J].西安科技大学学报,2017,37(6):829-836.ZHANG Yu-tao,MA Ting,LIN Jiao,et al. Analysis of fire incidents and characteristics of spatio-temporal distributions for serious fires from 2007 to 2016 in China[J]. Journal of Xi’an University of Science and Technology,2017,37(6):829-836.
    [6]苏墨.矿井胶带火灾灾变规律数值模拟及自动灭火系统设计研究[D].太原:太原理工大学,2017.SU Mo. Study on the simulation of mine belt fire disaster and the design of automatic extinguishing system[D].Taiyuan:Taiyuan University of Technology,2017.
    [7]郭军,岳宁芳,金永飞,等.矿井热动力灾害救援安全性评价指标体系[J].煤矿安全,2017,48(7):253-256.GUO Jun,YUE Ning-fang,JIN Yong-fei,et al. Evaluation index system for rescue safety of mine thermodynamic disasters[J]. Safety in Coal Mines,2017,48(7):253-256.
    [8]郭军.矿井热动力灾害救援安全性评价与动态预测[D].西安:西安科技大学,2016.GUO Jun. Safety evaluation and dynamic prediction for the rescue operation after mine thermo dynamic disasters[D]. Xi’an:Xi’an University of Science and Technology,2016.
    [9]文虎,郭军,金永飞,等.我国矿井热动力灾害评价研究进展及趋势[J].煤矿安全,2016,47(3):172-174+178.WEN Hu,GUO Jun,JIN Yong-fei,et al. Progress and trend of evaluation study on coal mine thermodynamic disasters in China[J]. Safety in Coal Mines,2016,47(3):172-174,178.
    [10] WEN Hu,GUO Jun,JIN Yong-fei,et al. Experimental study on the influence of different oxygen concentrations on coal spontaneous combustion characteristic parameters[J]. Int. J. Oil,Gas and Coal Technology,2017,16(2):187-202.
    [11] Swaminathans S,Midts C. The event sequence diagram frame work for dynamic probabilistic risk assessment[J]. Reliability Engineering and System Safety,1999,63(1):73-90.
    [12] NFPA264,standard method of test for heat and visible smoke release rates for material and produces using an oxygen consumption calorimeter[S]. American National Fire Protection Association,1992.
    [13]煤科总院重庆分院灾变通风课题组.巷道火灾时期的通风状态[J].煤炭工程师,1992(4):1-8.Disaster Ventilation Project Group of Chongqing Branch of Coal General Hospital. Ventilation state in the period of tunnel fire[J]. Coal Engineer,1992(4):1-8.
    [14]邓军,李士戎,炎正馨,等.基于移动火源的隧道拱顶温度分布规律实验研究[J].煤炭学报,2013,38(11):1967-1971.DENG Jun,LI Shi-rong,YAN Zheng-xin,et al. Experimental study on longitudinal temperature distribution law of tunnel ceiling based on moving fire source[J]. Journal of China Coal Society,2013,38(11):1967-1971.
    [15]张李荣.平直巷道胶带火灾温度场及烟气流动规律实验研究[D].西安:西安科技大学,2016.ZHANG Li-rong. Experimental study on temperature field and smoke flow of conveyor belt fire in flat tunnel[D]. Xi’an:Xi’an University of Science and Technology,2016.
    [16]张泽.矿井胶带火灾烟气流动模拟及危险区域划分[D].西安:西安科技大学,2017.ZHANG Ze. Simulaton and division of danger areas of smoke flow of belt fire in coal mine[D]. Xi’an:Xi’an University of Science and Technology,2017.
    [17]蒋军成,王省身.矿井竖巷内火灾燃烧模拟实验研究[J].火灾科学,1997,6(2):55-59.JIANG Jun-cheng,WANG Xing-shen. Study on the combustion processes of mine fires by simulational experiments[J]. Fire Safety Science,1997,6(2):55-59.
    [18]周延,王德明,周福宝.水平巷道火灾中烟流逆流层长度的实验研究[J].中国矿业大学学报,2001,30(5):446-448.ZHOU Yan,WANG De-ming,ZHOU Fu-bao. Experimental study on length of smoke back-flow layer of fire in horizontal tunnel[J]. Journal of China University of Mining&Technology,2001,30(5):446-448.
    [19]马砺,范晶,任立峰,等.地铁站台不同排烟模式下的烟气流动数值模拟[J].西安科技大学学报,2017,37(5):643-648.MA Li,FAN Jing,REN Li-feng,et al. Numerical simulation of smoke flow on subway platform under different extraction modes[J]. Journal of Xi’an University of Science and Technology,2017,37(5):643-648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700