重叠矿段采动下的工程响应仿真与评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simulation and Evaluation of Engineering Response Under the Mining of Overlapping-Orebody
  • 作者:胡建华 ; 高晨 ; 杨春
  • 英文作者:HU Jianhua;GAO Chen;YANG Chun;School of Resources and Safety Engineering,Central South University;
  • 关键词:应力 ; 位移 ; 监测 ; 重叠矿段 ; 开采扰动 ; 精细建模 ; 仿真 ; 安全评价
  • 英文关键词:stress;;displacement;;monitoring;;overlapping-orebody;;mining disturbance;;fine modeling;;simulation;;safety evaluation
  • 中文刊名:HJKJ
  • 英文刊名:Gold Science and Technology
  • 机构:中南大学资源与安全工程学院;
  • 出版日期:2017-12-13 10:29
  • 出版单位:黄金科学技术
  • 年:2018
  • 期:v.26;No.203
  • 基金:国家科技支撑计划课题“深部多层重叠矿体高效开采与灾害控制关键技术研究”(编号:2015BAB12B01);; 国家自然科学基金项目“深部采动下地质结构体跨尺度时变力学行为试验及机理”(编号:41672298)联合资助
  • 语种:中文;
  • 页:HJKJ201806007
  • 页数:8
  • CN:06
  • ISSN:62-1112/TF
  • 分类号:52-59
摘要
重叠矿体开采的相互作用和响应规律是影响矿山开采安全的重要因素。以镜铁山桦树沟铜矿与上部铁矿体的重叠矿段为研究对象,采用3DMine-Midas-FLAC3D耦合精细建模数值模拟技术,结合矿山实际工程和采充工序条件,建立了充填矿段铜矿体开采条件下的FeV矿体工程响应数值分析模型,获得了FeV矿体回采巷道等工程结构的位移和应力响应规律,对FeV矿体的开采进行了安全评价和分析。研究结果表明:(1)试验采场的采充过程中,FeV回采巷道2 865 m水平所受开挖扰动最大,最大位移达到2.3 cm,应力最大扰动幅度为11.34%,最大剪应力为1.27 MPa;(2)采充过程中,空区上方中心部分的Z方向应力会减小,应力向四周转移;空区上方中心位置剪应力无明显变化,剪应力在空区边缘变化明显;(3)在试验采场开采过程中,上部FeV矿体的2 880 m和2 895 m水平回采巷道处于稳定状态,建议矿山加快回采进度,实现强采强出,提高矿石回收率。
        The interaction and response law of overlapping-orebody mining are important factors that have significant influence on mining safety.The overlapping-orebody of Huashugou copper mine in Jingtieshan area where the upper iron orebody adjoins the under copper orebody was chosen as the research objects.Based on the coupled 3D Mine-Midas-FLAC3D technology,combined with practical mining and filling process of the mine,a numerical analysis model for the response of FeV orebody engineering under the condition of copper orebody in the filling section was established. Then the data including displacement and stress of stoping tunnel of FeV orebody were obtained and were used to analyze the mining process of FeV orebody. Results show that maximum excavating perturbation during mining and filling process of research area occurs in 2 865 m stoping tunnel,and the maximum displacement is 2.3 cm,the maximum amplitude of stress is 11.34% and the maximum shear stress is 1.27 MPa,respectively. The Z axis stress in the center of cavity roof remains decreasing,and it transfers to all round. The shear stress in the center of cavity roof keeps unchanged while it around the edge of cavity changes drastically. During the mining process of test stope,2 880 m and 2 895 m stoping tunnel above FeV orebody are in steady state.Consequently,stoping process can be accelerated to boost productivity,so as to improve the recovery rate of ore.
引文
[1]胡建华,雷涛,周科平,等.基于采矿环境再造的开采顺序时变优化研究[J].岩土力学,2011,32(8):2517-2522.Hu Jianhua,Lei Tao,Zhou Keping,et al. Time-varying optimization study of mining sequence based on recon‐structed mining environment[J].Rock and Soil Mechan‐ics,2011,32(8):2517-2522.
    [2]胡建华,苏家红,周科平,等.顶板诱导崩落模式选择时变数值分析[J].岩土力学,2008,29(4):931-936.Hu Jianhua,Su Jiahong,Zhou Keping,et al. Time-vary‐ing numerical analysis of mode in induction caving roof[J]. Rock and Soil Mechanics,2008,29(4):931-936.
    [3]王永年,殷世华.岩土工程安全监测手册[M].北京:中国水利水电出版社,1999.Wang Yongnian,Yin Shihua. Safety Monitoring Hand‐book for Geotechnical Engineering[M]. Beijing:China Water&Power Press,1999.
    [4]周科平.采矿过程模拟与仿真[M].长沙:中南大学出版社,2012.Zhou Keping.Simulation of Mining Process[M]. Chang‐sha:Central South University Press,2012.
    [5]张向东,黄宇,谷文军.隧道围岩施工监测及位移动态模拟分析[J].世界科技研究与发展,2011,33(6):952-954.Zhang Xiangdong,Huang Yu,Gu Wenjun. Monitoring and dynamic simulating of surrounding displacements in tunnel construction[J]. World Sci-Tech R&D,2011,33(6):952-954.
    [6]张春刚.桩锚支护深基坑监测数据分析及FLAC数值模拟[D].北京:中国地质大学,2011.Zhang Chungang. Monitoring Data Analysis and FLAC Numerical Simulation of Deep Excavation Applying the Pile-Anchor System[D]. Beijing:China University of Geosciences,2011.
    [7]马凤山,郭捷,李克蓬,等.三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J].黄金科学技术,2016,24(4):66-72.Ma Fengshan,Guo Jie,Li Kepeng,et al. Monitoring and research for the deformation of mine backfill and roof sur‐rounding rock when exploiting Sanshandao seabed gold mine[J]. Gold Science and Technology,2016,24(4):66-72.
    [8]李克蓬,马凤山,郭捷,等.三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J].黄金科学技术,2016,24(4):73-80.Li Kepeng,Ma Fengshan,Guo Jie,et al.Numerical simu‐lation of mine backfill and surrounding rock deformation when exploiting Sanshandao seabed gold mine[J]. Gold Science and Technology,2016,24(4):73-80.
    [9]吴意谦,朱彦鹏.兰州市湿陷性黄土地区地铁车站深基坑变形规律监测与数值模拟研究[J].岩土工程学报,2014,36(增2):404-411.Wu Yiqian,Zhu Yanpeng.Monitoring and numerical sim‐ulation of deformation law of deep foundation pit of sub‐way station in Lanzhou collapsible loess[J].Chinese Jour‐nal of Geotechnical Engineering,2014,36(Supp. 2):404-411.
    [10]李四维,高华东,杨铁灯.深基坑开挖现场监测与数值模拟分析[J].岩土工程学报,2011,33(增1):291-298.Li Siwei,Gao Huadong,Yang Tiedeng. Monitoring and numerical analysis of a deep foundation pit[J]. Chinese Journal of Geotechnical Engineering,2011,33(Supp.1):291-298.
    [11]吴姗,宋卫东,杜建华,等.高陡边坡下充填法开采挂帮矿稳定性数值模拟与安全监测[J].采矿与安全工程学报,2013,30(6):874-879.Wu Shan,Song Weidong,Du Jianhua,et al. Stability of numerical simulation and security monitoring of filling method to mining the hanging wall ore on high-steep slope[J].Journal of Mining and Safety Engineering,2013,30(6):874-879.
    [12]白永健,郑万模,邓国仕,等.四川丹巴甲居滑坡动态变形过程三维系统监测及数值模拟分析[J].岩石力学与工程学报,2011,30(5):974-981.Bai Yongjian,Zheng Wanmo,Deng Guoshi,et al.Threedimensional system monitoring and numerical simulation on the dynamic deformation process of Jiaju landslide in Danba,Sichuan[J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(5):974-981.
    [13]Hu J H,Lei T,Zhou K P,et al. Mechanical response of roof rock mass unloading during continuous mining pro‐cess in underground mine[J].Transactions of Nonferrous Metals Society of China,2011,21(12):2727-2733.
    [14]Abdellah W,Raju G D,Mitri H S,et al.Stability of under‐ground mine development intersections during the life of a mine plan[J]. International Journal of Rock Mechanics and Mining Sciences,2014,72:173-181.
    [15]Yang X J,Hou D G,Tao Z G,et al.Stability and remote re‐al-time monitoring of the slope slide body in the Luoshan mining area[J]. International Journal of Mining Science and Technology,2015,25(5):761-765.
    [16]周科平,杜相会.基于3DMINE-MIDAS/GTS-FLAC3D耦合的残矿回采稳定性研究[J].中国安全科学学报,2011,21(5):17-22.Zhou Keping,Du Xianghui.Study on stability of residual ore recovery based on coupling of 3D MINE-MIDAS/GTS-FLAC3D[J].China Safety Science Journal,2011,21(5):17-22.
    [17]曾庆田,刘科伟,严体,等.基于多数值模拟方法联合的自然崩落法开采研究[J].黄金科学技术,2015,23(1):66-73.Zeng Qingtian,Liu Kewei,Yan Ti,et al.Study on natural caving mining method based on multi-numerical simula‐tion method[J].Gold Science and Technology,2015,23(1):66-73.
    [18]邓红卫,郭旺,周科平,等.基于FLAC3D稳定性分析的残矿回采方案研究[J].金属矿山,2011,40(12):18-21.Deng Hongwei,Guo Wang,Zhou Keping,et al.Residual ore mining program based on FLAC3Dstability analysis[J].Metal Mine,2011,40(12):18-21.
    [19]邓红卫,杨懿全,邓畯仁,等.采空区下方高应力环境下深部矿体回采时序研究[J].黄金科学技术,2017,25(2):62-69.Deng Hongwei,Yang Yiquan,Deng Junren,et al. Study on mining sequence of deep orebody under high stress en‐vironment below goaf[J].Gold Science and Technology,2017,25(2):62-69.
    [20]闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24(16):2894-2899.Yan Changbin,Xu Guoyuan,Li Xibing.Stability analysis of mined-out areas influenced by blasting vibration with FLAC3D[J].Chinese Journal of Rock Mechanics and En‐gineering,2005,24(16):2894-2899.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700