等离激元增强金硅肖特基结近红外光电探测器进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction
  • 作者:王琦龙 ; 李裕培 ; 翟雨生 ; 计吉焘 ; 邹海洋 ; 陈广甸
  • 英文作者:Wang Qilong;Li Yupei;Zhai Yusheng;Ji Jitao;Zou Haiyang;Chen Guangdian;Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering,Southeast University;
  • 关键词:表面等离激元 ; 内光电效应 ; 硅基 ; 近红外 ; 光电探测
  • 英文关键词:surface plasmon;;internal photoemission effect(IPE);;silicon-based;;near-infrared;;photoelectronic dectection
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:东南大学电子科学与工程学院信息显示与可视化国际合作实验室;
  • 出版日期:2018-10-31 15:51
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.292
  • 基金:NSAF联合基金(U1730113);; 江苏省自然科学基金(BK20171365);; 111计划(B07027);; 中央高校基本科研业务费专项资金;; 江苏省研究生科研与实践创新计划(SJCX17_0020)
  • 语种:中文;
  • 页:HWYJ201902005
  • 页数:14
  • CN:02
  • ISSN:12-1261/TN
  • 分类号:29-42
摘要
表面等离激元共振衰减诱导热电子,因其能量高、分布窄、打破半导体禁带宽度限制等特点被广泛应用于拓展半导体光电转换的响应光谱,如拓展宽禁带半导体的响应光谱至可见光波段,拓展硅的响应波段至近红外。此外,还可以通过调节表面等离激元结构调控响应光谱和实现偏振探测,在实现硅基近红外光电探测领域具有重要的应用价值。从表面等离激元以及表面等离激元内光电效应的机理出发,综述了表面等离激元热电子原理在实现硅基近红外光电探测方面的研究进展,并总结了表面等离激元结构的形貌,尺寸、分布等因素对热电子的产生(外量子效率)和注入效率(内量子效率)的影响。最后展望了基于表面等离激元结构的硅基肖特基结近红外光电探测的研究方向。
        Due to the high energy, narrow distribution and breaking the bandgap limitation, plasmon induced hot electrons has been widely applied to extend the photoresponse spectra of the semiconductor,such as realizing the response spectrum of wideband semiconductor and silicon to visible and near-infrared range, respectively. Besides, the response spectrum can be adjusted by changing the plasmonic nanostructures, which has an important advantage for realizing silicon-based near-infrared photodectection.Firstly, the concept and mechanism of surface plasmon and plasmon enhanced internal photoemission were introduced. Then, the recent progress on near infrared hot electron photodetector based on silicon was summarized. The influence of the shape, size, distribution of plasmonic nanostructure on the generation and transportation of hot electrons were also summarized. Finally the challenges and potential future directions of surface plasmon enhanced near-infrared photodetector based on metal/Si Schottky heterojunction were discussed.
引文
[1]Downs C,Vandervelde T E.Progress in infrared photodetectors since 2000[J].Sensors,2013,13(4):5054-5098.
    [2]Li C,Bando Y,Liao M,et al.Visible-blind deep-ultraviolet Schottky photodetector with a photocurrent gain based on individual Zn2GeO4nanowire[J].Applied Physics Letters,2010,97(16):161102.
    [3]Wu P,Dai Y,Ye Y,et al.Fast-speed and high-gain photodetectors of individual single crystalline Zn3P2nanowires[J].Journal of Materials Chemistry,2011,21(8):2563-2567.
    [4]Hansen M P,Malchow D S.Overview of SWIR detectors,cameras,and applications[C]//Thermosense Xxx.International Society for Optics and Photonics,2008,6939:69390I.
    [5]Osborne B G,Fearn T,Hindle P H.Practical NIRSpectroscopy with Applications in Food and Beverage Analysis[M].Berlin:Longman Scientific and Technical,1993.
    [6]Gudiksen M S,Lauhon L J,Wang J,et al.Growth of nanowire superlattice structures for nanoscale photonics and electronics[J].Nature,2002,415(6872):617.
    [7]Jie J,Zhang W,Peng K,et al.Surface-dominated transport properties of silicon nanowires[J].Advanced Functional Materials,2008,18(20):3251-3257.
    [8]Zheng Daqing,Chen Weimin,Chen Li,et al.A laser ranging method with high precision and large range in high speed based on phase measurement[J].Journal of Optoelectronics·Laser,2015,26(2):303-308.(in Chinese)郑大青,陈伟民,陈丽,等.一种基于相位测量的快速高精度大范围的激光测距法[J].光电子·激光,2015,26(2):303-308.
    [9]Campbell J C.Recent advances in telecommunications avalanche photodiodes[J].Journal of Lightwave Technology,2007,25(1):109-121.
    [10]Wu Guoan,Luo Linbao.Development and application of near infrared photodetectors[J].Physics,2018,47(3):137-142.(in Chinese)吴国安,罗林保.近红外光电探测器的发展与应用[J].物理,2018,47(3):137-142.
    [11]Beling A,Campbell J C.InP-based high-speed photodetectors[J].Journal of Lightwave Technology,2009,27(3):343-355.
    [12]Kang Y,Mages P,Clawson A,et al.Fused InGaAs-Si avalanche photodiodes with low-noise performances[J].IEEE Photonics Technology Letters,2002,14(11):1593-1595.
    [13]Koester S J,Schaub J D,Dehlinger G,et al.Germanium-onSOI infrared detectors for integrated photonic applications[J].IEEE Journal of Selected Topics in Quantum Electronics,2006,12(6):1489-1502.
    [14]Harame D,Koester S,Freeman G,et al.The revolution in SiGe:impact on device electronics[J].Applied Surface Science,2004,224(1):9-17.
    [15]Eng P C,Song S,Ping B.State-of-the-art photodetectors for optoelectronic integration at telecommunication wavelength[J].Nanophotonics,2015,4(3):277-302.
    [16]Jones R,Park H D,Fang A W,et al.Hybrid silicon integration[J].Journal of Materials Science:Materials in Electronics,2009,20(1):3-9.
    [17]Michel J,Liu J,Kimerling L C.High-performance Ge-on-Si photodetectors[J].Nature Photonics,2010,4(8):527.
    [18]Kang Y,Liu H D,Morse M,et al.Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product[J].Nature Photonics,2009,3(1):59.
    [19]Vivien L,Osmond J,Fédéli J-M,et al.42 GHz p.i.n Germanium photodetector integrated in a silicon-oninsulator waveguide[J].Opt Express,2008,17:6252-6257.
    [20]Wang J,Lee S.Ge-photodetectors for Si-based optoelectronic integration[J].Sensors,2011,11(1):696-718.
    [21]Alloatti L,Srinivasan S A,Orcutt J S,et al.Waveguidecoupled detector in zero-change complementary metal-oxidesemiconductor[J].Applied Physics Letters,2015,107(4):041104.
    [22]Meng H,Atabaki A,Orcutt J S,et al.Sub-bandgap polysilicon photodetector in zero-change CMOS process for telecommunication wavelength[J].Opt Express,2015,23:32643-32653.
    [23]Mailoa J P,Akey A J,Simmons C B,et al.Roomtemperature sub-band gap optoelectronic response of hyperdoped silicon[J].Nature Communications,2014,5:3011.
    [24]Casalino M,Coppola G,Iodice M,et al.Near-infrared subbandgap all-silicon photodetectors:state of the art and perspectives[J].Sensors,2010,10(12):10571-10600.
    [25]Kimata M,Ozeki T,Tsubouchi N,et al.PtSi Schottkybarrier infared focal plane arrays[C]//Imaging System Technology for Remote Sensing.International Society for Optics and Photonics,1998,3505:2-13.
    [26]Knight M W,Sobhani H,Nordlander P,et al.Photodetection with active optical antennas[J].Science,2011,332(6030):702-704.
    [27]Maier S A.Plasmonics:Fundamentals and Applications[M].Berlin:Springer Science&Business Media,2007.
    [28]Brongersma M L,Kik P G.Surface Plasmon Nanophotonics[M].Berlin:Springer,2007.
    [29]Wang Zhenlin.A review on research progress in surface plasmons[J].Progress in Physics,2009,29(3):287-324.(in Chinese)王振林.表面等离激元研究新进展[J].物理学进展,2009,29(3):287-324.
    [30]Clavero C.Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices[J].Nature Photonics,2014,8(2):95-103.
    [31]Neumann O,Urban A S,Day J,et al.Solar vapor generation enabled by nanoparticles[J].Acs Nano,2013,7(1):42-49.
    [32]Hogan N J,Urban A S,Ayala-Orozco C,et al.Nanoparticles heat through light localization[J].Nano Letters,2014,14(8):4640-4645.
    [33]Sze S M,Ng K K.Physics of Semiconductor Devices[M].New Jersey:John Wiley&Sons,2006.
    [34]Zhang C,Wu K,Zhan Y,et al.Planar microcavityintegrated hot-electron photodetector[J].Nanoscale,2016,8(19):10323-10329.
    [35]Zhan Y,Wu K,Zhang C,et al.Infrared hot-carrier photodetection based on planar perfect absorber[J].Optics Letters,2015,40(18):4261-4264.
    [36]Sze S M,Moll J L,Sugano T.Range-energy relation of hot electrons in gold[J].Solid-State Electronics,1964,7(7):509-523.
    [37]White T P,Catchpole K R.Plasmon-enhanced internal photoemission for photovoltaics:theoretical efficiency limits[J].Applied Physics Letters,2012,101(7):073905.
    [38]Donati S.Photodetectors[M].New Jersey:Prentice Hall PTR,1999.
    [39]Kan T,Ajiki Y,Matsumoto K,et al.Si process compatible near-infrared photodetector using Au/Si nano-pillar array[C]//Micro Electro Mechanical Systems(MEMS),2016 IEEE 29th International Conference on.IEEE,2016:624-627.
    [40]Ajiki Y,Kan T,Yahiro M,et al.Near infrared photodetector using self-assembled formation of organic crystalline nanopillar arrays[C]//Micro Electro Mechanical Systems(MEMS),2014 IEEE 27th International Conference on.IEEE,2014:147-150.
    [41]Ajiki Y,Kan T,Yahiro M,et al.Silicon based near infrared photodetector using self-assembled organic crystalline nanopillars[J].Applied Physics Letters,2016,108(15):151102.
    [42]Schider G,Krenn J R,Hohenau A,et al.Plasmon dispersion relation of Au and Ag nanowires[J].Physical Review B,2003,68(15):155427.
    [43]Ajiki Y,Kan T,Yahiro M,et al.Silicon based near infrared photodetector using self-assembled organic crystalline nanopillars[J].Applied Physics Letters,2016,108(15):151102.
    [44]Yang Z,Liu M,Liang S,et al.Hybrid modes in plasmonic cavity array for enhanced hot-electron photodetection[J].Optics Express,2017,25(17):20268-20273.
    [45]Knight M W,Wang Y,Urban A S,et al.Embedding plasmonic nanostructure diodes enhances hot electron emission[J].Nano Letters,2013,13(4):1687-1692.
    [46]Li W,Valentine J.Metamaterial perfect absorber based hot electron photodetection[J].Nano Letters,2014,14(6):3510-3514.
    [47]Desiatov B,Goykhman I,Mazurski N,et al.Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime[J].Optica,2015,2(4):335-338.
    [48]Wen L,Chen Y,Liang L,et al.Hot electron harvesting via photoelectric ejection and photothermal heat relaxation in hotspots-enriched plasmonic/photonic disordered nanocomposites[J].ACS Photonics,2017,5(2):581-591.
    [49]Wen L,Chen Y,Liu W,et al.Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-schottky junction[J].Laser&Photonics Reviews,2017,11(4):1700059.
    [50]Qi Z,Zhai Y,Wen L,et al.Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron nearinfrared photodetection[J].Nanotechnology,2017,28(27):275202.
    [51]Goykhman I,Desiatov B,Khurgin J,et al.Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band[J].Optics Express,2012,20(27):28594-28602.
    [52]Goykhman I,Desiatov B,Khurgin J,et al.Locally oxidized silicon surface-plasmon Schottky detector for telecom regime[J].Nano Letters,2011,11(6):2219-2224.
    [53]Muehlbrandt S,Melikyan A,Harter T,et al.Siliconplasmonic internal-photoemission detector for 40 Gbit/s data reception[J].Optica,2016,3(7):741-747.
    [54]Sobhani A,Knight M W,Wang Y,et al.Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device[J].Nature Communications,2013,4:1643.
    [55]Qin L,Zhang C,Li R,et al.Silicon-gold core-shell nanowire array for an optically and electrically characterized refractive index sensor based on plasmonic resonance and Schottky junction[J].Optics Letters,2017,42(7):1225-1228.
    [56]Phillips K S.JiríHomola(Ed.):Surface plasmon resonancebased sensors[J].Analytical and Bioanalytical Chemistry,2008,390(5):1221-1222.
    [57]Tetz K A,Pang L,Fainman Y.High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance[J].Optics Letters,2006,31(10):1528-1530.
    [58]Porto J,Garcia-Vidal F,Pendry J.Transmission resonances on metallic gratings with very narrow slits[J].Physical Review Letters,1999,83(14):2845.
    [59]Gordon R,Brolo A,Mckinnon A,et al.Strong polarization in the optical transmission through elliptical nanohole arrays[J].Physical Review Letters,2004,92(3):037401.
    [60]Li W,Coppens Z J,Besteiro L V,et al.Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials[J].Nature Communications,2015,6:8379.
    [61]Chalabi H,Schoen D&Brongersma M L.Hot-electron photodetection with a plasmonic nanostripe antenna[J].Nano Lett,2014,14:1374-1380.
    [62]Afshinmanesh F,White J S,Cai W,et al.Measurement of the polarization state of light using an integrated plasmonic polarimeter[J].Nanophotonics,2012,1(2):125-129.
    [63]Wu C Y,Pan Z Q,Wang Y Y,et al.Core-shell silicon nanowire array-Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector[J].Journal of Materials Chemistry C,2016,4(46):10804-10811.
    [64]Alavirad M,Olivieri A,Roy L,et al.High-responsivity subbandgap hot-hole plasmonic Schottky detectors[J].Optics Express,2016,24(20):22544-22554.
    [65]Lin K T,Chen H L,Lai Y S,et al.Silicon-based broadband antenna for high responsivity and polarizationinsensitive photodetection at telecommunication wavelengths[J].Nature Communications,2014,5:3288.
    [66]Casalino M,Iodice M,Sirleto L,et al.Low dark current silicon-on-insulator waveguide metal-semiconductor-metalphotodetector based on internal photoemissions at 1 550 nm[J].Journal of Applied Physics,2013,114(15):153103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700