GEO轨道相对论电子日积分通量预报统计建模
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Statistical Model of the Relativistic Electron Fluence Forecast at Geostationary Orbit
  • 作者:钟秋珍 ; 未历航 ; 林瑞淋 ; 金磊 ; 刘四清
  • 英文作者:ZHONG Qiuzhen;WEI Lihang;LIN Ruilin;ZHENG Jinlei;LIU Siqing;National Space Science Center, Chinese Academy of Sciences;University of Chinese Academy of Sciences;Department of Space Science,University of Alabama in Huntsville;
  • 关键词:地球静止轨道 ; 哨声波局地加速 ; 地磁AE指数 ; 太阳风速度 ; 相对论电子预报
  • 英文关键词:Geostationary orbit;;Local acceleration by chorus mode wave;;AE index;;Solar wind speed;;Relativistic electron forecast
  • 中文刊名:KJKB
  • 英文刊名:Chinese Journal of Space Science
  • 机构:中国科学院国家空间科学中心;中国科学院大学;美国阿拉巴马汉茨维尔大学空间科学学院;
  • 出版日期:2019-01-15
  • 出版单位:空间科学学报
  • 年:2019
  • 期:v.39
  • 语种:中文;
  • 页:KJKB201901019
  • 页数:10
  • CN:01
  • ISSN:11-1783/V
  • 分类号:24-33
摘要
基于辐射带相对论电子哨声波局地加速理论,将地磁AE指数作为源电子通量和通量各向异性的指标,将地磁Dst指数作为损失机制的指标,利用滑动窗口线性滤波器方法,建立了一个地球静止轨道大于2 MeV相对论电子预报模型.利用该模型开展了2000-2009年地球静止轨道相对论电子通量预报试验.研究发现,这10年总预报效率为0.818, 2003年的预报效率(0.633)最低,2009年的预报效率(0.856)最高.模型预报效果与持续模型相比有很大提高,略低于利用太阳风参数作为输入的同类预报模型的预报效果.这说明即使在缺少太阳风参数的情况下,该模型利用地磁扰动参数也能取得较好的预报效果.当模型输入参数增加了太阳风速度时,即综合考虑了行星际扰动和磁层扰动对辐射带粒子加速过程的影响,模型逐年的预报效率进一步提升.其中,2005年的预报效率提升了9.5%,这10年的总预报效率增加到0.848,预报值与实测值之间的线性相关系数为0.918,均方根误差为0.422.
        Based on the theory of local acceleration by chorus mode wave, AE index is selected as a good indicator for both source electron flux and flux anisotropy, and Dst index is selected as a good indicator for relativistic electron loss. By use of AE and Dst indices as input parameters, a prediction model for relativistic electrons at GEO orbit has been established on the basis of linear filter technology. The results are as follows. The total Prediction Efficiency(PE) of our model for the data from 2000 to 2009 is 0.818. The highest PE is about 0.856, which occurred in 2009. The lowest PE is about 0.663, which occurred in 2003. The prediction accuracy of the model is significantly better than that of the persistence model and is slightly less than the model developed by the same method but taking the solar wind as the input parameters. Furthermore, the model is improved by taking solar wind speed as an additional input parameter. The values of PE from 2000 to 2009 increase every year. The PE of 2005 is increased by 9.5%. The total prediction efficiency from 2000 to 2009 increased to 0.848. The linear correlation coefficient between forecasts and observations is 0.918, and the root mean square error is 0.422.
引文
[1] WRENN G L, RODGERS D J, RYDEN K A. A solar cycle of spacecraft anomalies due to internal charging[J].Ann. Geophys., 2002, 20:953-956. DOI:10.5194/angeo-20-953-2002
    [2] LI X, TEMERIN M A. The electron radiation belt[J].Space Sci. Rev., 2001, 95(1/2):569-580. DOI:10.1023/A:1005221108016
    [3] FRIEDEL R H W, REEVES G D, OBARA T. Relativistic electron dynamics in the inner magnetosphere—a review[J]. J. Atmos. Sol.-Terr. Phys., 2002, 64(2):265-282.DOI:10.1016/S1364-6826(01)00088-8
    [4] MILLAN R M, THORNE R M. Review of radiation belt relativistic electron losses[J]. J. Atmos. Sol.-Terr. Phys.,2007, 69(3):362-377. DOI:10.1016/j.jastp.2006.06.019
    [5] MEREDITH N P, HORNE R B, SUMMERS D, et al. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus[J]. Ann. Geophys.,2002, 20:967-979. DOI:10.5194/angeo-20-967-2002
    [6] SUMMERS D, THORNE R M, XIAO FULIANG. Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere[J].J. Geophys. Res., 1998, 103(A9):20487-20500
    [7] HORNE R B, THORNE R M. Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms[J]. Geophys. Res. Lett., 1998,25(15):3011-3014
    [8] THORNE R M, LI W, NI B, et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus[J]. Nature, 2013, 504:411-414. DOI:10.1038/nature12889
    [9] GAO Z, ZHU H, ZHANG L, et al. Test particle simulations of interaction between monochromatic chorus waves and radiation belt relativistic electrons[J]. Astrophys.Space Sci., 2014, 351(2):427-434. DOI:10.1007/s10509-014-1859-1
    [10] LAUBEN D S, INAN U S, BELL T F, et al. Source characteristics of ELF/VLF chorus[J]. J. Geophys. Res.,2002, 107(A12):1429-1425. DOI:10.1029/2000JA003019
    [11] MIYOSHI Y, MORIOKA A, MISAWA H, et al. Rebuilding process of the outer radiation belt during the 3November 1993 magnetic storm:NOAA and Exos-D observations[J]. J.Geophys. Res., 2003, 108(AI):1004-1018.DOI:10.1029/2001JA007542
    [12] BAKER D N, LI X, TURNER N, et al. Recurrent geomagnetic storms and relativistic electron enhancements in the outer magnetosphere:ISTP coordinated measurements[J].J. Geophys. Res., 1997, 102(A7):14141-14148.DOI:10.1029/97JA00565
    [13] BAKER D N, PULKKINEN T I, LI X, et al. A strong CME-related magnetic cloud interaction with the Earth's Magnetosphere:ISTP observations of rapid relativistic electron acceleration on May 15, 1997[J]. Geophys. Res.Lett., 1998, 25(15):2975-2978. DOI:10.1029/98GL01134
    [14] LI X, BAKER D N, TEMERIN M, et al. Rapid enchancements of relativistic electrons deep in the magnetosphere during the May 15, 1997, magnetic storm[J]. J. Geophys.Res., 1999, 104(A3):4467-4476
    [15] LI L Y, CAO J B, ZHOU G C. Relation between the variation of geomagnetospheric relativistic electron flux and storm/substorm[J]. Chin. J. Geophys., 2006, 49(1):9-15(李柳元,曹晋滨,周国成.磁层相对论电子通量变化与磁暴/亚暴的关系[J].地球物理学报,2006, 49(1):9-15)
    [16] BAKER D N, MCPHERRON R L, CAYTON T E, et al. Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6 R_e[J]. J. Geophys. Res., 1990,95(A9):15133-15140
    [17] Li X, Temerin M, Baker, D N, et al. Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements[J]. Geophys. Res.Lett., 2001, 28(9):1887-1890
    [18] Turner D L, Li X. Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low-energy electron flux[J]. Space Weather, 2008, 6(5). DOI:10.1029/2007SW000354
    [19] HE Tian, LIU Siqing, XUE Bingsen, et al. Study on a forecasting method of the relativistic electron flux at geostationary orbit using geomagnetic pulsation data[J].Chinese J. Geophys., 2009, 52(10):2419-2427. DOI:10.3969/j.issn.0001-5733.2009.10.1001(何甜,刘四清,薛炳森,等.利用地磁脉动预报地球同步轨道相对论电子通量的方法研究[J].地球物理学报,2009, 52(10):2419-2427. DOI:10.3969/j.issn.0001-5733.2009.10.1001)
    [20] XUE Bingsen, YE Zonghai. Forecast of the enhancement of relativistic electron at the geo-synchronous orbit[J].Chin. J. Space Sci., 2004, 24(4):283-288(薛炳森,叶宗海.地球同步轨道高能电子增强事件预报方法[J].空间科学学报,2004, 24(4):283-288)
    [21] LING A G, GINET G P, HILMER R V, et al. A neural networkbased geosynchronous relativistic electron flux forecasting model[J]. Space Weather, 2010, 8(9). DOI:10.1029/2010SW000576
    [22] WANG Renzhong, SHI Liqin. Study on the forecasting method of relativistic electron flux at geostationary orbit based on support vector machine[J]. Chin. J. Space Sci.,2012, 32(3):354-361(王任重,师立勤.基于支持向量机方法的地球同步轨道相对论电子事件预报模型研究[J].空间科学学报,2012, 32(3):354-361)
    [23] ZHENG Jinlei, ZHONG Qiuzhen, CHEN Liangxu, et al.Analysis on relativistic electron flux enhancement Event at GEO in April 2010[J]. Chin. J. Space Sci., 2012,32(4):488-500(郑金磊,钟秋珍,陈良旭,等.2010年4月地球同步轨道相对论电子增强事件分析[J].空间科学学报,2012,32(4):488-500)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700