电极布置方式对高密度电法探测分辨率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects on the resolution of high-density electrical method by electrodesarray deploying
  • 作者:杨磊 ; 金维浚 ; 尚彦军
  • 英文作者:YANG Lei;JIN Wei-jun;SHANG Yan-jun;Institute of Geology and Geophysics, Chinese Academy of Sciences;Academy of Earth Science, Chinese Academy of Sciences;
  • 关键词:高密度电法 ; 分辨率 ; 多电极埋入技术(MERIT)
  • 英文关键词:High-density electrical method;;Resolution;;Multi-Electrode Resistivity Implant Technique(MERIT)
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:中国科学院地质与地球物理研究所;中国科学院地球科学研究院;
  • 出版日期:2018-10-24 15:10
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.153
  • 基金:国家自然科学基金(41772320)资助
  • 语种:中文;
  • 页:DQWJ201901055
  • 页数:6
  • CN:01
  • ISSN:11-2982/P
  • 分类号:412-417
摘要
高密度电法据观测到的视电阻率数据及其反演后的电阻率剖面来推断地下地质结构.传统高密度电法受限于测线长度和电极装置,存在着一些弊端,如探测深度较浅,在测线端点处分辨率差,并且分辨率随深度增加而下降,特别当存在浅层低阻屏蔽时,电流难以向深部传播,分辨率降低.针对上述问题,为提高高密度电法探测的分辨率,本文介绍了一种新型高密度电法野外布极方式:多电极埋入技术(Multi-Electrode Resistivity Implant Technique,MERIT).通过室内模型测试和野外实地检验,将其与传统高密度电法排列进行比较,结果表明MERIT布极方式在测线端点处和地下深部分辨率有显著提高.在相同测线长度下,探测深度增加,对低阻体的反映更灵敏,受到低阻屏蔽效应减小,能够反映深部更丰富的地层信息.故MERIT能够有效地克服传统高密度电法探测存在的缺陷,有效提高探测的分辨率.
        High-density electrical method is used to investigate the underground geological structure based on the observed apparent resistivity data used to make the resistivity image section after inversion. First, due to the array configures and the lengths of survey lines, conventional surveys resolve resistivity to depths considerably shallower than the total array length. Second, the resolution of the traditional high-density electrical surveys is decreasing with investigation depth and it shows poor effectiveness near the ends of survey lines. Particularly, the current hardly penetrate into deep layers in the presence of shallow conductive layer, this exacerbates the resolution problem. In order to handle these problems, this paper mainly introduces a new electrode deploying method which is referred to as Multi-Electrode Resistivity Implant Technique, or MERIT. We compare it with conventional High-density electrical method based on laboratory experiments and field case study to verify how MERIT can effectively improve the resolution of high-density electrical method. The result shows that depth of resolution can be approximately increased over that of a conventional surface array of equal length, decrease in depth of penetration due to shallow clay layers is much less in MERIT arrays compared to conventional surface arrays. Besides, MERIT obtains much better resolution at the ends of survey lines, shows more sensitivity to low-resistivity abnormal body and is less vulnerable to shallow conductive layer. More strata information in the depth is obtained between the surface and buried arrays. As a result, MERIT can overcome the shortcomings of conventional High-density electrical method and obtain much better resolution.
引文
Chen Bin-Wen,Gong Jian-Ping,Ji Qi-Wei,et al. 2009. Data Processing method for High-density resistivity cavity detection [J]. Subgrade Engineering (in Chinese),(1): 175-177.陈斌文,龚剑平,嵇其伟. 2009. 高密度电阻率法空洞探测的数据处理方法[J]. 路基工程,(1): 175-177.
    Gao Ming-Liang,Yu Sheng-Bao,Zheng Jian-Bo,et al. 2016. Research of resistivity imaging using neural network based on immune genetic algorithm [J]. Chinese Journal of Geophysics (in Chinese),59(11): 4372- 4382,doi: 10.6038/cjg20161136.高明亮,于生宝,郑建波,等. 2016. 基于IGA算法的电阻率神经网络反演成像研究[J]. 地球物理学报,59(11): 4372- 4382,doi: 10.6038/cjg20161136.
    El-Qady G,Ushijima K. 2001. Inversion of DC resistivity data using neural network [J]. Geophysical Prospecting,49(4): 417- 430.
    Hammersley J M,Handscomb D C. 1965. Monte Carlo Methods [J]. Physics Today,18(2): 55-56.
    Harro D B,Kruse S. 2013. Improved imaging of covered karst with the multi-electrode resistivity implant technique [J]. Inorganic Chemistry,22(12): 1744-1750.
    Huang Zhen-Ping,Hu Yan,Zhu Peng-Chao,et al. 2014. Analysis of resolution influence factors of high-density electrical method and its application [J]. Journal of Engineering Geology (in Chinese),(5): 1015-1021,doi: 10.13544/j.cnki.jeg.2014.05.035.黄真萍,胡艳,朱鹏超. 2014. 高密度电阻率勘测方法分辨率研究与探讨[J]. 工程地质学报,(5): 1015-1021,doi: 10.13544/j.cnki.jeg.2014.05.035.
    Kiflu H,Kruse S,Loke M H,et al. 2016. Improving resistivity survey resolution at sites with limited spatial extent using buried electrode arrays [J]. Journal of Applied Geophysics,135: 338-355.
    Kirkpatrick S. 1984. Optimization by simulated annealing: Quantitative studies [J]. Journal of Statistical Physics,34(5- 6): 975-986.
    Li Hong-Li,Zhang Hua,Wang Chuan-Bin,et al. 2010. Analysis of Applying Cross-hole High-density Resistivity Method to Detecting Krast Cave [J]. Chinese Journal of Engineering Geophysics (in Chinese),07(3): 339-343,doi: 10.3969/j.issn.1672-7940.2010.03.014.李红立,张华,汪传斌. 2010. 跨孔高密度电阻率法溶洞探测效果验证分析[J]. 工程地球物理学报,7(3): 339-343,doi: 10.3969/j.issn.1672-7940.2010.03.014.
    Li Wen-Ling,Huang Zhen-Ping. 2015. Discussion and Analysis of the Resolution of High-density Resistivity Imaging Devices in Complex Terrain [J]. Journal of Water Resources and Architectural Engineering (in Chinese),13(2): 37- 41.李文灵,黄真萍,王福喜. 2015. 复杂地形高密度电法观测装置的分辨率探讨与分析[J]. 水利与建筑工程学报,13(2): 37- 41.
    Liu Jian-Xin,Cao Chuang-Hua,Guo Rong-Wen,et al. 2013. Experimental study on the sounding with high-density resistivity method by using different devices [J]. Geotechnical Investigation & Surveying (in Chinese),41(4): 85-89.柳建新,曹创华,郭荣文. 2013. 不同装置下的高密度电法测深试验研究[J]. 工程勘察,41(4): 85-89.
    Loke M H,Acworth I,Dahlin T. 2003. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys [J]. Exploration Geophysics,34(3): 182-187.
    Loke M H,Kiflu H G,Wilkinson P B,et al. 2015. Optimized arrays for 2-D resistivity surveys with combined surface and buried arrays [J]. Near Surface Geophysics,13(5): 505-518.
    Loke M H,Wilkinson P B,Chambers J E. et al. 2014b. Optimized arrays for 2D cross-borehole electrical tomography surveys [J]. Geophysical Prospecting,62(1): 172-189.
    Loke M H,Wilkinson P B,Uhlemann S S,et al. 2014a. Computation of optimized arrays for 3-D electrical imaging surveys [J]. Geophysical Journal International,199(3): 1751-1764.
    Menke W. 1984. Geophysical Data Analysis: Discrete Inverse Theory [M]. Academic(New York).
    Paasche H,Werban U,Dietrich P. 2009. Near-surface seismic traveltime tomography using a direct-push source and surface-planted geophones [J]. Geophysics,74(4): G17-G25.
    Su Zhao-Feng,Chen-Chang-Yan,Zhang Zai-Wu. 2008. Application of wavelet noise reduction technology in high-density resistivity signal processing [J]. Geotechnical Investigation & Surveying (in Chinese),(1): 72-74.苏兆锋,陈昌彦,张在武. 2008. 小波降噪技术在高密度电阻率信号处理中的应用[J]. 工程勘察,2008(1): 72-74.
    United States Environmental Protection Agency. 2005. Groundwater Sampling and Monitoring with Direct Push Technologies,EPA 540/R- 04/005. Office of Solid Waste and Emergency Response,(78p).
    van Laarhoven P J M,Aarts E H L. 1987. Simulated Annealing: Theory and Applications. D.Reidel Publishing Company,371(1): 108-111.
    Wang Shu-Ming,Liu Yu-Lan,Wang Jia-Ying. 2009. Lecture on Non-Linear Methods in Geophysical Data(9) Ant colony optimization [J]. Chinese Journal of Engineering Geophysics (in Chinese),6(2): 131-136.王书明,刘玉兰,王家映. 2009. 地球物理资料非线性反演方法讲座(九)-蚁群算法[J]. 工程地球物理学报,6(2): 131-136.
    Wilkinson P B,Chambers J E,Lelliott M,et al. 2008. Extreme sensitivity of crosshole electrical resistivity tomography measurements to geometric errors [J]. Geophysical Journal International,173(1): 49- 62.
    Wilkinson P B,Loke M H,Meldrum P I,et al. 2012. Practical aspects of applied optimized survey design for electrical resistivity tomography [J]. Geophysical Journal International,189(1): 428- 440.
    Wilkinson P B,Meldrum P I,Chambers J E,et al. 2010. Improved strategies for the automatic selection of optimized sets of electrical resistivity tomography measurement configurations [J]. Geophysical Journal International,167(3): 1119-1126.
    Xu Hai-Lang,Wu Xiao-Ping. 2006. 2-D resistivity inversion using the neural network method [J]. Chinese Journal of Geophysics (in Chinese),49(2): 584-589,doi: 10.3321/j.issn:0001-5733.2006.02.035.徐海浪,吴小平. 2006. 电阻率二维神经网络反演[J]. 地球物理学报,49(2): 584-589,doi: 10.3321/j.issn:0001-5733.2006.02.035.
    Yan Jia-Yong,Meng Gui-Xiang,Lv Qing-Tian. 2012. Progress and prospect of high-density electrical method [J]. Geophysical and Geochemical Exploration (in Chinese),36(4): 576-584.严加永,孟贵祥,吕庆田. 2012. 高密度电法的进展与展望[J]. 物探与化探,36(4): 576-584.
    Yan Yong-Li,Chen Ben-Chi,Zhao Yong-Gui,et al. 2009. Nonlinear inversion for electrical resistivity tomography [J]. Chinese Journal of Geophysics (in Chinese),52(3): 758-764.闫永利,陈本池,赵永贵. 2009. 电阻率层析成像非线性反演[J]. 地球物理学报,52(3): 758-764.
    Zhang Ling-Yun,Liu Hong-fu. 2011. The application of ABP method in high-density resistivity method inversion [J]. Chinese Journal of Geophysics (in Chinese),54(1): 227-223,doi: 10.3969/j.issn.0001-5733.2011.01.024.张凌云,刘鸿福. 2011. ABP法在高密度电阻率法反演中的应用[J]. 地球物理报,54(1): 227-233,doi: 10.3969/j.issn.0001-5733.2011.01.024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700