氧化石墨烯的制备还原及应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene oxide: progress in preparation,reduction and application
  • 作者:张倩 ; 唐利斌 ; 李汝劼 ; 金钟 ; 黄强 ; 刘树平
  • 英文作者:ZHANG Qian;TANG Li-Bin;LI Ru-Jie;XIANG Jin-Zhong;HUANG Qiang;LAU Shu-Ping;College of Materials Science and Engineering,Yunnan University;Kunming Institute of Physics;Department of Physics,Beijing Institute of Technology;Department of Applied Physics,The Hong Kong Polytechnic University;
  • 关键词:氧化石墨烯 ; 制备方法 ; 表征 ; 还原 ; 应用
  • 英文关键词:graphene oxide;;preparation methods;;characterization;;reduction;;applications
  • 中文刊名:HWYH
  • 英文刊名:Journal of Infrared and Millimeter Waves
  • 机构:云南大学材料科学与工程学院;昆明物理研究所;北京理工大学物理学院;香港理工大学应用物理系;
  • 出版日期:2019-02-15
  • 出版单位:红外与毫米波学报
  • 年:2019
  • 期:v.38
  • 基金:中央军委装备发展部装备预研项目(1422030209);; 中国兵器创新团队项目(2017CX024)资助~~
  • 语种:中文;
  • 页:HWYH201901015
  • 页数:12
  • CN:01
  • ISSN:31-1577/TN
  • 分类号:81-92
摘要
随着石墨烯产业的蓬勃发展,氧化石墨烯作为制备工程化应用石墨烯的中间体产物而备受关注.同时由于其自身优异的物理化学性质,使其在各大领域均有前所未有的新兴应用.作者针对国内外氧化石墨烯的各种结构模型、制备方法、性质和相关应用,以及氧化石墨烯的还原进行了总结与概述.在对比各种方法的基础上,作者提出了氧化剂和还原剂的选择是反应的关键要素,归纳了选择的基本原则.最后,指出氧化石墨烯制备和还原研究中还需解决的问题,并对其发展和影响做出了评价和展望.
        With the rapid development of graphene industry,graphene oxide has attracted much attention as an important intermediate product of the preparation of graphene. Due to its excellent physical and chemical properties,it has been widely used in multitudinous fields. Various structural models,preparation methods,properties and related applications,as well as the reduction of graphene oxide are summarized. The choice of oxidants and reduction agents were found to be important in the reaction. The basic selective principles are discussed after comparing various methods. Finally,it is pointed out that there are still some problems to be solved in the preparation and reduction of graphene oxide. The prospect of graphene oxide on its development and influence will also be evaluated.
引文
[1]Novoselov K S,Geim A K,Morozov S V,et al.[J]. Science,2004,306(5696):666-669.
    [2]Zhao G,Li X,Huang M,et al. The physics and chemistry of graphene-on-surfaces[J]. Chemical Society Reviews,2017,46(15):4417-4449.
    [3]Ni Z,Ma L,Du S,et al. Plasmonic Silicon Quantum Dots Enabled High-Sensitivity Ultrabroadband Photodetection of Graphene-Based Hybrid Phototransistors[J]. ACS Nano,2017,11(10):9854-9862.
    [4]Liu X Y,Chen H,Wang R,et al. 0D-2D Quantum Dot:Metal Dichalcogenide Nanocomposite Photocatalyst Achieves Efficient Hydrogen Generation[J]. Advanced Materials,2017,29(22):1700463.
    [5]Guo N,Hu W,Jiang T,et al. High-quality infrared imaging with graphene photodetectors at room temperature.Nanoscale,2016,8(35):16065-16072.
    [6]Hofmann U,Holst R.[J]. European Journal of Inorganic Chemistry,2010,72(4):754-771.
    [7]Ruess G.? ber das Graphitoxyhydroxyd(Graphitoxyd)[J]. Monatshefte für Chemie-Chemical Monthly,1947,76(3):381-417.
    [8]Scholz W,Boehm H P. Untersuchungen am Graphitoxid.VI. Betrachtungen Betrachtungen zur struktur des graphitoxids[J]. Z Anorg Allg Chem. Zeitschrift Für Anorganische Und Allgemeine Chemie,1969,369(3-6):327-340.
    [9]Nakajima T,Matsuo Y. Formation process and structure of graphite oxide[J]. Carbon,1994,32(3):469-475.
    [10]Heyong He,Thomas Riedl,Anton Lerf A,et al. SolidState NMR Studies of the Structure of Graphite Oxide[J].Journal of Physical Chemistry,1996,100(51):19954-19958.
    [11]Erickson K,Erni R,Lee Z,et al. Determination of the local chemical structure of graphene oxide and reduced graphene oxide[J]. Advanced materials,2010,22(40):4467.
    [12]SzabóT,Berkesi O,ForgóP,et al. Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides[J]. Chemistry of Materials,2006,18(11):2740-2749.
    [13]Dimiev A M,Alemany L B,Tour J M. Graphene oxide.Origin of acidity,its instability in water,and a new dynamic structural model[J]. ACS Nano,2013,7(1):576-588.
    [14]Dimiev A,Kosynkin D V,Alemany L B,et al. Pristine graphite oxide[J]. Journal of America Chemistry Society,2012,134(5):2815-2822.
    [15]Brodie B C. On the Atomic Weight of Graphite[J]. Philosophical Transactions of the Royal Society of London,2009,149(1):249-259.
    [16]Staudenmaier L. Verfahren zur Darstellung der Graphits?ure[J]. European Journal of Inorganic Chemistry,1898,31(2):1481-1487.
    [17]Hummers W S,Offeman R E. Preparation of Graphitic Oxide[J]. Journal of America Chemistry Society,1958,80(6):1339.
    [18]Nina I K,Patricia J O,Benjamin R M,et al. Layer-byLayer Assembly of Ultrathin Composite Films from MicronSized Graphite Oxide Sheets and Polycations[J]. Chemistry of Materials,1999,11(3):771-778.
    [19]Marcano D C,Kosynkin D V,Berlin J M,et al. Improved synthesis of graphene oxide[J]. ACS Nano,2010,4(8):4806-4814.
    [20]Chen J,Yao B W,Li C,et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J].Carbon,2013,64(11):225-229.
    [21]Peng L,Xu Z,Liu Z,et al. An iron-based green approach to 1-h production of single-layer graphene oxide[J]. Nature Communications,2015,6:5716.
    [22]Wazir A H,Kundi I W. Synthesis of Graphene Nano Sheets by the Rapid Reduction of Electrochemically Exfoliated Graphene Oxide Induced by Microwaves[J]. Journal of America Chemistry Society of Pakistan,2016,38(1):11-16.
    [23]Hossain S T,Wang R G. Electrochemical Exfoliation of Graphite:Effect of Temperature and Hydrogen Peroxide Addition[J]. Electrochim Acta,2016,216:253-260.
    [24]Sun J J,Yang N X,Sun Z,et al. Fully Converting Graphite into Graphene Oxide Hydrogels by Preoxidation with Impure Manganese Dioxide[J]. ACS Applied Materials and Interfaces,2015,7(38):21356-21363.
    [25]Liou Y J,Tsai B D,Huang W J. An economic route to mass production of graphene oxide solution for preparing graphene oxide papers[J]. Materials Science and Engineering B,2015,193:37-40.
    [26]ZHOU Peng,WEI Hong-Qiang,SUN Hai-Tao,et al.High-k gate oxides integration of graphene based infrared detector[J]. J. Infrared Millim. Waves.(周鹏,魏红强,孙清清,等.石墨烯基红外探测器的高k栅氧集成.红外与毫米波学报)2012,31(2):118-121.
    [27]Chen J,Li Y R,Huang L,et al. High-yield preparation of graphene oxide from small graphite flakes via an improved Hummers method with a simple purification process[J]. Carbon,2015,81(1):826-834.
    [28]Yu C,Wang C F,Chen S. Facile Access to Graphene Oxide from Ferro-Induced Oxidation[J]. Science Reports,2016,6:17071.
    [29]Tang L B,Li X M,Ji R B,et al. Bottom-up synthesis of large-scale graphene oxide nanosheets[J]. Journal of Materials Chemistry,2012,22(12):5676-5683.
    [30]Newman L,Lozano N,Zhang M,et al. Hypochlorite degrades 2D graphene oxide sheets faster than 1D oxidised carbon nanotubes and nanohorns[J]. npj 2D Materials and Applications,2017,1(1):39.
    [31]Chang J H,Li H H,Yang Z B,et al. Efficient and compact Q-switched green laser using graphene oxide as saturable absorber[J]. Optics And Laser Technology 2018,98:134-138.
    [32]Chu J H,Kwak J,Kim S D,et al. Monolithic graphene oxide sheets with controllable composition[J]. Nature Communications,2014,5:3383.
    [33]Guerrero-Contreras J,Caballero-Briones F. Graphene oxide powders with different oxidation degree,prepared by synthesis variations of the Hummers method[J]. Materials Chemistry And Physics,2015,153:209-220.
    [34]ZHANG Dong-Xian ZHANG Hai-Jun LIN Xiao-Feng Characteristics of PSD233 position sensitive detector and its application in atomic force microscope[J]. J. Infrared Millim. Waves.(张冬仙,章海军,林晓峰. PSD233型位置敏感元件的特性及其在AFM中的应用.红外与毫米波学报)2003,22(5):384-388.
    [35]Hu Y S,Ma H B,Liu W,et al. Preparation and Investigation of the Microtribological Properties of Graphene Oxide and Graphene Films via Electrostatic Layer-by-Layer Self-Assembly[J]. Journal of Nanomaterials, 2015,2015:1-8.
    [36]Zhang X F,Shao X,Liu S. Dual fluorescence of graphene oxide:a time-resolved study[J]. The journal of physical chemistry A,2012,116(27):7308-7313.
    [37]Chua C K,Pumera M. Chemical reduction of graphene oxide:a synthetic chemistry viewpoint[J]. Chemical Society Reviews,2014,43(1):291-312.
    [38]Brauer G. Handbook of preparative inorganic chemistry[M],2nd edition. Texas; UT Back-in-Print Service,1963.
    [39]Stankovich S,Dikin D A,Piner R D,et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565.
    [40]Pham V H,Cuong T V,Nguyen-Phan T D,et al. Onestep synthesis of superior dispersion of chemically converted graphene in organic solvents[J]. Chemical Communications(Cambridge,England),2010,46(24):4375-4377.
    [41]Mao S,Yu K,Cui S,et al. A new reducing agent to prepare single-layer,high-quality reduced graphene oxide for device applications[J]. Nanoscale,2011,3(7):2849-2853.
    [42]Amarnath C A,Hong C E,Kim N H,et al. Efficient synthesis of graphene sheets using pyrrole as a reducing agent[J]. Carbon,2011,49(11):3497-3502.
    [43]Liu S,Tian J Q,Wang L,et al. A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection[J]. Carbon,2011,49(10):3158-3164.
    [44]Che J F,Shen L Y,Xiao Y H. A new approach to fabricate graphene nanosheets in organic medium:combination of reduction and dispersion[J]. Journal of Materials Chemistry,2010,20(9):1722-1727.
    [45]Dreyer D R,Murali S,Zhu Y W,et al. Reduction of graphite oxide using alcohols[J]. Journal of Materials Chemistry,2011,21(10):3443-3447.
    [46]Zhu C,Guo S,Fang Y,et al. Reducing sugar:new functional molecules for the green synthesis of graphene nanosheets[J]. ACS Nano,2010,4(4):2429-2437.
    [47]Chen W F,Yan L F,Bangal P R. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds[J]. The Journal of Physical Chemistry C 2010,114(47):19885-19890.
    [48]Zhou T,Chen F,Liu K,et al. A simple and efficient method to prepare graphene by reduction of graphite oxide with sodium hydrosulfite[J]. Nanotechnology,2011,22(4):045704.
    [49]Some S,Kim Y,Yoon Y,et al. High-Quality Reduced Graphene Oxide by a Dual-Function Chemical Reduction and Healing Process[J]. Scientific Reports,2013,3(1929):1929.
    [50]Chua C K,Ambrosi A,Pumera M. Graphene oxide reduction by standard industrial reducing agent:thiourea dioxide[J]. Journal of Materials Chemistry,2012,22(22):11054-11061.
    [51]Wang Y Q,Sun L,Fugetsu B. Thiourea Dioxide as a Green Reductant for the Mass Production of Solution-Based Graphene[J]. Bulletin of the Chemical Society of Japan,2012,85(12):1339-1344.
    [52]Shin H J,Kim K K,Benayad A,et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance[J]. Advanced Functional Materials,2009,19(12):1987-1992.
    [53]Chua C K,Pumera M. Reduction of graphene oxide with substituted borohydrides[J]. Journal of Materials Chemistry A,2013,1(5):1892-1898.
    [54]Pham V H,Hur S H,Kim E J,et al. Highly efficient reduction of graphene oxide using ammonia borane[J].Chemical Communication,2013,49(59):6665-6667.
    [55]Moon I K,Lee J,Ruoff R S,et al. Reduced graphene oxide by chemical graphitization[J]. Nature Communications,2010,1(6):73.
    [56]Cui P,Lee J,Hwang E,et al. One-pot reduction of graphene oxide at subzero temperatures[J]. Chemical Communications(Cambridge, England),2011,47(45):12370-12372.
    [57]Pei S F,Zhao J P,Du J H,et al. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids[J]. Carbon,2010,48(15):4466-4474.
    [58]Chen Y,Zhang X O,Zhang D C,et al. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes[J]. Carbon,2011,49(2):573-580.
    [59]Chua C K,Pumera M. Renewal of sp(2)bonds in graphene oxides via dehydrobromination[J]. Journal of Materials Chemistry,2012,22(43):23227-23231.
    [60]Ambrosi A,Chua C K,Bonanni A,et al. Lithium Aluminum Hydride as Reducing Agent for Chemically Reduced Graphene Oxides[J]. Chemistry of Materials,2012,24(12):2292-2298.
    [61]Fan Z J,Kai W,Yan J,et al. Facile synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide[J]. ACS Nano,2011,5(1):191-198.
    [62]Fan Z J,Wang K,Wei T,et al. An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder[J]. Carbon,2010,48(5):1686-1689.
    [63]Pham V H,Pham H D,Dang T T,et al. Chemical reduction of an aqueous suspension of graphene oxide by nascent hydrogen[J]. Journal of Materials Chemistry,2012,22(21):10530-10536.
    [64]Barman B K,Mahanandia P,Nanda K K. Instantaneous reduction of graphene oxide at room temperature[J]. RSC Advances,2013,3(31):12621-12624.
    [65]Mei X G,Ouyang J Y. Ultrasonication-assisted ultrafast reduction of graphene oxide by zinc powder at room temperature[J]. Carbon,2011,49(15):5389-5397.
    [66]Dey R S,Hajra S,Sahu R K,et al. A rapid room temperature chemical route for the synthesis of graphene:metalmediated reduction of graphene oxide[J]. Chemical Communications(Cambridge, England),2012,48(12):1787-1789.
    [67]Kumar N A,Gambarelli S,Duclairoir F,et al. Synthesis of high quality reduced graphene oxide nanosheets free of paramagnetic metallic impurities[J]. Journal of Materials Chemistry A,2013,1(8):2789-2794.
    [68]Liu Y Z,Li Y F,Zhong M,et al. A green and ultrafast approach to the synthesis of scalable graphene nanosheets with Zn powder for electrochemical energy storage[J].Journal of Materials Chemistry,2011,21(39):15449-15455.
    [69]Feng H,Cheng R,Zhao X,et al. A low-temperature method to produce highly reduced graphene oxide[J].Nature Communications,2013,4(2):1539.
    [70]Yang S,Yue W B,Huang D Z,et al. A facile green strategy for rapid reduction of graphene oxide by metallic zinc[J]. RSC Advances,2012,2(23):8827-8832.
    [71]Muszynski R,Seger B,Kamat P V. Decorating graphene sheets with gold nanoparticles[J]. The Journal of Physical Chemistry C,2008,112(14):5263-5266.
    [72]Shin H J,Kim K K,Benayad A,et al. Efficient Reduction of Graphite Oxide by Sodium Borohydride and Its Effect on Electrical Conductance[J]. Advanced Functional Materials,2009,19(12):1987-1992.
    [73]Chen W,Yan L,Bangal P R. Chemical Reduction of Graphene Oxide to Graphene by Sulfur-Containing Compounds[J]. The Journal of Physical Chemistry C,2010,114(47):19885-19890.
    [74]Zhou M,Wang Y,Zhai Y,et al. Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films[J]. Chemistry,2009,15(25):6116-6120.
    [75]Dubin S,Gilje S,Wang K,et al. A one-step,solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents[J]. ACS Nano,2010,4(7):3845-3852.
    [76]Chen W F,Yan L F,Bangal P R. Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves[J]. Carbon,2010,48(4):1146-1152.
    [77]Williams G,Seger B,Kamat P V. Ti O2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide[J]. ACS Nano,2008,2(7):1487-1491.
    [78]Voiry D,Yang J,Kupferberg J,et al. High-quality graphene via microwave reduction of solution-exfoliated graphene oxide[J]. Science,2016,353(6306):1413-1416.
    [79]Maiti R,Manna S,Midya A,et al. Broadband photoresponse and rectification of novel graphene oxide/n-Si heterojunctions[J]. Opt Express,2013,21(22):26034-26043.
    [80]Karteri I,Karatas S,Yakuphanoglu F. Photosensing properties of pentacene thin film transistor with solution-processed silicon dioxide/graphene oxide bilayer insulators[J]. Journal Of Materials Science-Materials In Electronics,2016,27(5):5284-5293.
    [81]Li S S,Tu K H,Lin C C,et al. Solution-Processable Graphene Oxide as an Efficient Hole Transport Layer in Polymer Solar Cells[J]. ACS Nano,2010,4(6):3169-3174.
    [82]Wang P,He F L,Wang J,et al. Graphene oxide nanosheets as an effective template for the synthesis of porous Ti O2film in dye-sensitized solar cells[J]. Applied Surface Science 2015,358:175-180.
    [83]Liu S,Wu X,Zhang D,et al. Ultrafast Dynamic Pressure Sensors Based on Graphene Hybrid Structure[J]. ACS Applied Materials and Interfaces,2017,9(28):24148-24154.
    [84]Huang Z,Zhou A,Wu J,et al. Bottom-Up Preparation of Ultrathin 2D Aluminum Oxide Nanosheets by Duplicating Graphene Oxide[J]. Advanced Materials,2016,28(8):1703-1708.
    [85]Bardhan N M,Kumar P V,Li Z,et al. Enhanced Cell Capture on Functionalized Graphene Oxide Nanosheets through Oxygen Clustering[J]. ACS Nano,2017,11(2):1548-1558.
    [86]Ren F,Wang H,Zhai C,et al. Clean method for the synthesis of reduced graphene oxide-supported Pt Pd alloys with high electrocatalytic activity for ethanol oxidation in alkaline medium[J]. ACS Applied Materials and Interfaces,2014,6(5):3607-3614.
    [87]Madadrang C J,Kim H Y,Gao G,et al. Adsorption behavior of EDTA-graphene oxide for Pb(II)removal[J].ACS Applied Materials and Interfaces,2012,4(3):1186-1193.
    [88]Perez J V D,Nadres E T,Nguyen H N,et al. Response surface methodology as a powerful tool to optimize the synthesis of polymer-based graphene oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal contaminants[J]. RSC Advances,2017,7(30):18480-18490.
    [89]Jiang Y,Shao H,Li C,et al. Versatile Graphene Oxide Putty-Like Material[J]. Advanced materials,2016,28(46):10287-10292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700