微波诱变选育高效溶磷木霉菌株的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Screening of Trichoderma sp. strain for high phosphorus solubilization using microwave mutagenesis
  • 作者:薛应钰 ; 叶巍 ; 张树武 ; 刘佳 ; 徐秉良
  • 英文作者:XUE Ying-yu;YE Wei;ZHANG Shu-wu;LIU Jia;XU Bing-liang;College of Plant Protection,Gansu Agricultural University;
  • 关键词:木霉菌 ; 微波诱变 ; 溶磷能力 ; 拮抗作用
  • 英文关键词:Trichoderma sp.;;microwave mutagenesis;;phosphate solubilization capacity;;antagonistic effect
  • 中文刊名:GHDQ
  • 英文刊名:Agricultural Research in the Arid Areas
  • 机构:甘肃农业大学植物保护学院;
  • 出版日期:2016-07-10
  • 出版单位:干旱地区农业研究
  • 年:2016
  • 期:v.34;No.157
  • 基金:甘肃省高校基本科研业务费项目资助(甘财教[2012]129号);; 甘肃省教育厅高校科研项目资助(2013A-061);; 甘肃省自然科学基金项目(145RJZA095);; 甘肃农业大学科技创新基金资助项目(GAU-CX1014)
  • 语种:中文;
  • 页:GHDQ201604036
  • 页数:6
  • CN:04
  • ISSN:61-1088/S
  • 分类号:237-242
摘要
为了获得高效溶磷菌株,对木霉菌T6菌株进行微波诱变处理,测定并分析了微波输出功率和辐照时间等参数对诱变效果的影响。结果表明:最佳诱变条件是微波输出功率900 W,辐照时间70 s,且在此条件下得到8株具有较高溶磷能力的突变菌株T6-9、T6-33、T6-93、T6-126、T6-157、T6-188、T6-196和T6-203。经过多代转接培养最后得到一株遗传稳定的溶磷木霉菌株T6-157,该菌株在液体培养条件下溶磷量为204.46 mg·L~(-1),与出发菌株相比,溶磷量提高了107.97%,植酸酶活性提高了57.35%,且突变菌株对土传植物病原菌的拮抗能力也有所提高。
        In order to obtain Trichoderma sp. strain with high phosphorus dissolving efficiency,the original strain,Trichoderma T6 with low ability in dissolving phosphorus,was mutated by microwave. The microwave mutagenesis parameters were optimized,and the genetic stability,phosphate solubilizing power and antibiotic ability of the mutant were investigated. The results showed that the optimum mutagenic method was with an irradiation power at 900 W and a mutation time of 70 s. 8 stains with high phosphorus solubilizing capability named T6- 9,T6- 33,T6- 93,T6- 126,T6- 157,T6- 188,T6- 196 and T6- 203 were obtained using the optimized mutagenic method. After several generations,a strain named T6- 157 with relatively stable hereditary was eventually obtained,exhibiting high phosphorus solubilizing capability. The highest phosphate solubilizing power of mutant strain T6- 157 was 204. 46 mg·L~(-1),and the phosphate solubilizing power and phytase activity were increased by 107.97% and 57. 35%,respectively,compared with the original strain. The antagonistic ability against the main soilborne pathogens was higher than that of the initial strain T6.
引文
[1]Femondez L A,Zalba P,Gomez M A,et al.Phosphate solubilization activity of bacterial strains in soil and their effect on soybean growth under greenhouse conditions[J].Biology and Fertility of Soils,2007,43(6):805-809.
    [2]Vessey J K,Heisnger K G.Effect of Penicillium bilaii inoculation and phosphorus fertilization on root and shoot parameters of fieldgrown pea[J].Canadian Journal of Plant Science,2001,81(3):361-366.
    [3]Zaidi A,Kham M S,Ahemad M,et al.Recent advances in plant growth promotion by phosphate-solubilizing microbes[J].Microbial Strategies for Crop Improvement,2009,(10):23.
    [4]K.Saravanakumar,V.Shanmuga Arasu,K.Kathiresan.Effect of Trichoderma on soil phosphate solubilization and growth improvement of Avicennia marina[J].Aquatic Botany,2013,104:101-105.
    [5]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料,2001,(3):7-11.
    [6]Rekha R,Lakshmi T.Effect of abiotic stress on phosphate solubilization by biocontrol fungus Trichoderma sp.[J].Current Microbiology,2011,62:1521-1526.
    [7]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998,35(1):104-111.
    [8]Sah U S,Natarajan N,H Ari K.Influence of phosphorus solubilizing bacteria on the changes in soil available phosphorus and sugarcane and sugar yields[J].Field Crops Research,2002,77:43-49.
    [9]陈廷伟.解磷巨大芽孢杆菌分类名称、形态特征及解磷性能述评[J].土壤肥料,2005,(1):7-9.
    [10]Harman G E,Howellcr,Viterboa,et al.Trichoderma species opportunistic,avirulent plant symbionts[J].Nature Review Microbiol,2004,(2):43-56.
    [11]Anusuyda,Jayara J.Solubilization of phosphorus by Tichoderma viride[J].Current Science,1998,74:464-465.
    [12]Altomarec,Norvellwa,Bjokmant,et al.Solubilization of phosphates and micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum Rifai[J].Environmental Microbiology,1999,65:2926-2933.
    [13]杨合同,唐文华,李纪顺,等.绿色木霉LTR-2菌株的紫外线诱变改良[J].中国生物防治,2004,20(3):82-186.
    [14]李豪,车振明.微波诱变微生物育种的研究[J].山西食品工业,2005,(2):5-6.
    [15]李永泉,贺莜蓉.微波诱变和激光诱变相结合选育金霉素链霉菌的研究[J].生物工程学报,1998,14(4):445-448.
    [16]秦涛,李忠玲,张强,等.绿色木霉产纤维素酶菌种的优化及酶学性质研究[J].贵州农业科学,2010,38(6):110-1l1.
    [17]赵靖,张荟,杨静.微波诱变选育纤维素酶高产木霉[J].广州化工,2014,42(16):89-90,161.
    [18]岳斌,王宝维,张名爱,等.鹅源草酸青霉溶磷效果及对鹅磷代谢的影响[J].青岛农业大学学报(自然科学版),2008,25(1):34-37.
    [19]Fiske C H,Subbarow Y.Method for the colorimetric determination of phosphate[J].Journal of Biological Chemistry,1925,66:375-400.
    [20]Heinonen J K,Lahti R J.A new and convenient calorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase[J].Analytical Biochemistry,1981,113:313-317.
    [21]李宏宇,鲁国东,王明海.稻瘟病菌微波诱发突变体的分析[J].菌物系统,2003,22(4):639-644.
    [22]杨合同,于雪云,魏艳丽,等.多功能植病生防木霉的分离筛选与鉴定[J].山东科学,2009,22(5):211-214.
    [23]张曼曼,邓春生,马金奉,等.多功能木霉的筛选及鉴定[J].农业环境科学学报,2012,31(8):1571-1575.
    [24]徐伟,王鹏,张兴,等.微波诱变高产L-乳酸细菌的选育与表征[J].天津大学学报,2009,42(6):544-548.
    [25]李永泉.微波诱变选育木聚糖酶高产菌[J].微波学报,2001,17(1):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700